ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptg GIF version

Theorem elrnmptg 4604
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmptg (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
21rnmpt 4600 . . 3 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
32eleq2i 2145 . 2 (𝐶 ∈ ran 𝐹𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 r19.29 2494 . . . . 5 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → ∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵))
5 eleq1 2141 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝑉𝐵𝑉))
65biimparc 293 . . . . . . 7 ((𝐵𝑉𝐶 = 𝐵) → 𝐶𝑉)
7 elex 2610 . . . . . . 7 (𝐶𝑉𝐶 ∈ V)
86, 7syl 14 . . . . . 6 ((𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
98rexlimivw 2473 . . . . 5 (∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
104, 9syl 14 . . . 4 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → 𝐶 ∈ V)
1110ex 113 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V))
12 eqeq1 2087 . . . . 5 (𝑦 = 𝐶 → (𝑦 = 𝐵𝐶 = 𝐵))
1312rexbidv 2369 . . . 4 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1413elab3g 2744 . . 3 ((∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V) → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1511, 14syl 14 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
163, 15syl5bb 190 1 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  {cab 2067  wral 2348  wrex 2349  Vcvv 2601  cmpt 3839  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-mpt 3841  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by:  elrnmpti  4605  fliftel  5453
  Copyright terms: Public domain W3C validator