![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fliftel | GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftel | ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3786 | . . . 4 ⊢ (𝐶𝐹𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐹) | |
2 | flift.1 | . . . . 5 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
3 | 2 | eleq2i 2145 | . . . 4 ⊢ (〈𝐶, 𝐷〉 ∈ 𝐹 ↔ 〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
4 | 1, 3 | bitri 182 | . . 3 ⊢ (𝐶𝐹𝐷 ↔ 〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
5 | flift.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
6 | flift.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
7 | opexg 3983 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ V) | |
8 | 5, 6, 7 | syl2anc 403 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
9 | 8 | ralrimiva 2434 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 〈𝐴, 𝐵〉 ∈ V) |
10 | eqid 2081 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
11 | 10 | elrnmptg 4604 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 〈𝐴, 𝐵〉 ∈ V → (〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉)) |
12 | 9, 11 | syl 14 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉)) |
13 | 4, 12 | syl5bb 190 | . 2 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉)) |
14 | opthg2 3994 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) | |
15 | 5, 6, 14 | syl2anc 403 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
16 | 15 | rexbidva 2365 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
17 | 13, 16 | bitrd 186 | 1 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 Vcvv 2601 〈cop 3401 class class class wbr 3785 ↦ cmpt 3839 ran crn 4364 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-mpt 3841 df-cnv 4371 df-dm 4373 df-rn 4374 |
This theorem is referenced by: fliftcnv 5455 fliftfun 5456 fliftf 5459 fliftval 5460 qliftel 6209 |
Copyright terms: Public domain | W3C validator |