ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel GIF version

Theorem fliftel 5453
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftel (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅   𝑥,𝐷   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftel
StepHypRef Expression
1 df-br 3786 . . . 4 (𝐶𝐹𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐹)
2 flift.1 . . . . 5 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
32eleq2i 2145 . . . 4 (⟨𝐶, 𝐷⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
41, 3bitri 182 . . 3 (𝐶𝐹𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
5 flift.2 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴𝑅)
6 flift.3 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑆)
7 opexg 3983 . . . . . 6 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ V)
85, 6, 7syl2anc 403 . . . . 5 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
98ralrimiva 2434 . . . 4 (𝜑 → ∀𝑥𝑋𝐴, 𝐵⟩ ∈ V)
10 eqid 2081 . . . . 5 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1110elrnmptg 4604 . . . 4 (∀𝑥𝑋𝐴, 𝐵⟩ ∈ V → (⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩))
129, 11syl 14 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩))
134, 12syl5bb 190 . 2 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩))
14 opthg2 3994 . . . 4 ((𝐴𝑅𝐵𝑆) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
155, 6, 14syl2anc 403 . . 3 ((𝜑𝑥𝑋) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
1615rexbidva 2365 . 2 (𝜑 → (∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
1713, 16bitrd 186 1 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  wrex 2349  Vcvv 2601  cop 3401   class class class wbr 3785  cmpt 3839  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-mpt 3841  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by:  fliftcnv  5455  fliftfun  5456  fliftf  5459  fliftval  5460  qliftel  6209
  Copyright terms: Public domain W3C validator