![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrpd | GIF version |
Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | elrp 8736 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 408 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1433 class class class wbr 3785 ℝcr 6980 0cc0 6981 < clt 7153 ℝ+crp 8734 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-rp 8735 |
This theorem is referenced by: zltaddlt1le 9028 modqval 9326 ltexp2a 9528 leexp2a 9529 expnlbnd2 9598 resqrexlem1arp 9891 resqrexlemp1rp 9892 resqrexlemcalc2 9901 resqrexlemcalc3 9902 resqrexlemgt0 9906 resqrexlemglsq 9908 rpsqrtcl 9927 absrpclap 9947 mulcn2 10151 climge0 10163 |
Copyright terms: Public domain | W3C validator |