ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrpd GIF version

Theorem elrpd 8771
Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
elrpd.1 (𝜑𝐴 ∈ ℝ)
elrpd.2 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
elrpd (𝜑𝐴 ∈ ℝ+)

Proof of Theorem elrpd
StepHypRef Expression
1 elrpd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 elrpd.2 . 2 (𝜑 → 0 < 𝐴)
3 elrp 8736 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
41, 2, 3sylanbrc 408 1 (𝜑𝐴 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433   class class class wbr 3785  cr 6980  0cc0 6981   < clt 7153  +crp 8734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-rp 8735
This theorem is referenced by:  zltaddlt1le  9028  modqval  9326  ltexp2a  9528  leexp2a  9529  expnlbnd2  9598  resqrexlem1arp  9891  resqrexlemp1rp  9892  resqrexlemcalc2  9901  resqrexlemcalc3  9902  resqrexlemgt0  9906  resqrexlemglsq  9908  rpsqrtcl  9927  absrpclap  9947  mulcn2  10151  climge0  10163
  Copyright terms: Public domain W3C validator