ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc2 GIF version

Theorem resqrexlemcalc2 9901
Description: Lemma for resqrex 9912. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc2
StepHypRef Expression
1 resqrexlemex.seq . . 3 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
2 resqrexlemex.a . . 3 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . 3 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemcalc1 9900 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
51, 2, 3resqrexlemf 9893 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
65ffvelrnda 5323 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
76rpred 8773 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
87resqcld 9631 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ)
92adantr 270 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
108, 9resubcld 7485 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ)
116rpap0d 8779 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) # 0)
127, 11sqgt0apd 9633 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < ((𝐹𝑁)↑2))
138, 12elrpd 8771 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ+)
148, 9readdcld 7148 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + 𝐴) ∈ ℝ)
153adantr 270 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → 0 ≤ 𝐴)
168, 9addge01d 7633 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (0 ≤ 𝐴 ↔ ((𝐹𝑁)↑2) ≤ (((𝐹𝑁)↑2) + 𝐴)))
1715, 16mpbid 145 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ≤ (((𝐹𝑁)↑2) + 𝐴))
188, 14, 9, 17lesub1dd 7661 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) + 𝐴) − 𝐴))
198recnd 7147 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℂ)
209recnd 7147 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
2119, 20pncand 7420 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + 𝐴) − 𝐴) = ((𝐹𝑁)↑2))
2218, 21breqtrd 3809 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ ((𝐹𝑁)↑2))
2310, 8, 13, 22lediv1dd 8832 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ≤ (((𝐹𝑁)↑2) / ((𝐹𝑁)↑2)))
248, 12gt0ap0d 7728 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) # 0)
2519, 24dividapd 7874 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) / ((𝐹𝑁)↑2)) = 1)
2623, 25breqtrd 3809 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ≤ 1)
2710, 8, 24redivclapd 7920 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ∈ ℝ)
28 1red 7134 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 1 ∈ ℝ)
291, 2, 3resqrexlemover 9896 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐴 < ((𝐹𝑁)↑2))
30 difrp 8770 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝐹𝑁)↑2) ∈ ℝ) → (𝐴 < ((𝐹𝑁)↑2) ↔ (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ+))
319, 8, 30syl2anc 403 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐴 < ((𝐹𝑁)↑2) ↔ (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ+))
3229, 31mpbid 145 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ+)
33 4re 8116 . . . . . . . 8 4 ∈ ℝ
3433a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ)
35 4pos 8136 . . . . . . . 8 0 < 4
3635a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 4)
3734, 36elrpd 8771 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ+)
3832, 37rpdivcld 8791 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / 4) ∈ ℝ+)
3927, 28, 38lemul1d 8817 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ≤ 1 ↔ (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) ≤ (1 · ((((𝐹𝑁)↑2) − 𝐴) / 4))))
4026, 39mpbid 145 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) ≤ (1 · ((((𝐹𝑁)↑2) − 𝐴) / 4)))
4110recnd 7147 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℂ)
4234recnd 7147 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℂ)
4334, 36gt0ap0d 7728 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 4 # 0)
4441, 19, 41, 42, 24, 43divmuldivapd 7918 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) = (((((𝐹𝑁)↑2) − 𝐴) · (((𝐹𝑁)↑2) − 𝐴)) / (((𝐹𝑁)↑2) · 4)))
4541sqvald 9602 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = ((((𝐹𝑁)↑2) − 𝐴) · (((𝐹𝑁)↑2) − 𝐴)))
4642, 19mulcomd 7140 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (4 · ((𝐹𝑁)↑2)) = (((𝐹𝑁)↑2) · 4))
4745, 46oveq12d 5550 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))) = (((((𝐹𝑁)↑2) − 𝐴) · (((𝐹𝑁)↑2) − 𝐴)) / (((𝐹𝑁)↑2) · 4)))
4844, 47eqtr4d 2116 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
4938rpcnd 8775 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / 4) ∈ ℂ)
5049mulid2d 7137 . . 3 ((𝜑𝑁 ∈ ℕ) → (1 · ((((𝐹𝑁)↑2) − 𝐴) / 4)) = ((((𝐹𝑁)↑2) − 𝐴) / 4))
5140, 48, 503brtr3d 3814 . 2 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
524, 51eqbrtrd 3805 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  {csn 3398   class class class wbr 3785   × cxp 4361  cfv 4922  (class class class)co 5532  cmpt2 5534  cr 6980  0cc0 6981  1c1 6982   + caddc 6984   · cmul 6986   < clt 7153  cle 7154  cmin 7279   / cdiv 7760  cn 8039  2c2 8089  4c4 8091  +crp 8734  seqcseq 9431  cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  resqrexlemcalc3  9902
  Copyright terms: Public domain W3C validator