ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climge0 GIF version

Theorem climge0 10163
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
Hypotheses
Ref Expression
climrecl.1 𝑍 = (ℤ𝑀)
climrecl.2 (𝜑𝑀 ∈ ℤ)
climrecl.3 (𝜑𝐹𝐴)
climrecl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climge0.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climge0 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘

Proof of Theorem climge0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecl.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 climrecl.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32adantr 270 . . . . . 6 ((𝜑𝐴 < 0) → 𝑀 ∈ ℤ)
4 climrecl.3 . . . . . . . . . 10 (𝜑𝐹𝐴)
5 climrecl.4 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
61, 2, 4, 5climrecl 10162 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
76adantr 270 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
87renegcld 7484 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
96lt0neg1d 7616 . . . . . . . 8 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
109biimpa 290 . . . . . . 7 ((𝜑𝐴 < 0) → 0 < -𝐴)
118, 10elrpd 8771 . . . . . 6 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ+)
12 eqidd 2082 . . . . . 6 (((𝜑𝐴 < 0) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
134adantr 270 . . . . . 6 ((𝜑𝐴 < 0) → 𝐹𝐴)
141, 3, 11, 12, 13climi2 10127 . . . . 5 ((𝜑𝐴 < 0) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
151r19.2uz 9879 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴 → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
1614, 15syl 14 . . . 4 ((𝜑𝐴 < 0) → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
17 simprr 498 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
185ad2ant2r 492 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) ∈ ℝ)
197adantr 270 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℝ)
208adantr 270 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → -𝐴 ∈ ℝ)
2118, 19, 20absdifltd 10064 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((abs‘((𝐹𝑘) − 𝐴)) < -𝐴 ↔ ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴))))
2217, 21mpbid 145 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴)))
2322simprd 112 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < (𝐴 + -𝐴))
2419recnd 7147 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℂ)
2524negidd 7409 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐴 + -𝐴) = 0)
2623, 25breqtrd 3809 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < 0)
27 climge0.5 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
2827ad2ant2r 492 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ≤ (𝐹𝑘))
29 0red 7120 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ∈ ℝ)
3029, 18lenltd 7227 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (0 ≤ (𝐹𝑘) ↔ ¬ (𝐹𝑘) < 0))
3128, 30mpbid 145 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ¬ (𝐹𝑘) < 0)
3226, 31pm2.21fal 1304 . . . 4 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ⊥)
3316, 32rexlimddv 2481 . . 3 ((𝜑𝐴 < 0) → ⊥)
3433inegd 1303 . 2 (𝜑 → ¬ 𝐴 < 0)
35 0re 7119 . . 3 0 ∈ ℝ
36 lenlt 7187 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3735, 6, 36sylancr 405 . 2 (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3834, 37mpbird 165 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1284  wfal 1289  wcel 1433  wral 2348  wrex 2349   class class class wbr 3785  cfv 4922  (class class class)co 5532  cr 6980  0cc0 6981   + caddc 6984   < clt 7153  cle 7154  cmin 7279  -cneg 7280  cz 8351  cuz 8619  abscabs 9883  cli 10117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-clim 10118
This theorem is referenced by:  climle  10172
  Copyright terms: Public domain W3C validator