![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climge0 | GIF version |
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.) |
Ref | Expression |
---|---|
climrecl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climrecl.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climrecl.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climrecl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climge0.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climge0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrecl.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climrecl.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | 2 | adantr 270 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝑀 ∈ ℤ) |
4 | climrecl.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
5 | climrecl.4 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
6 | 1, 2, 4, 5 | climrecl 10162 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | 6 | adantr 270 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐴 ∈ ℝ) |
8 | 7 | renegcld 7484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
9 | 6 | lt0neg1d 7616 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴)) |
10 | 9 | biimpa 290 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 0) → 0 < -𝐴) |
11 | 8, 10 | elrpd 8771 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → -𝐴 ∈ ℝ+) |
12 | eqidd 2082 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
13 | 4 | adantr 270 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐹 ⇝ 𝐴) |
14 | 1, 3, 11, 12, 13 | climi2 10127 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 < 0) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
15 | 1 | r19.2uz 9879 | . . . . 5 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴 → ∃𝑘 ∈ 𝑍 (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
16 | 14, 15 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 0) → ∃𝑘 ∈ 𝑍 (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
17 | simprr 498 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) | |
18 | 5 | ad2ant2r 492 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) ∈ ℝ) |
19 | 7 | adantr 270 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℝ) |
20 | 8 | adantr 270 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → -𝐴 ∈ ℝ) |
21 | 18, 19, 20 | absdifltd 10064 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ((abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴 ↔ ((𝐴 − -𝐴) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) < (𝐴 + -𝐴)))) |
22 | 17, 21 | mpbid 145 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ((𝐴 − -𝐴) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) < (𝐴 + -𝐴))) |
23 | 22 | simprd 112 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) < (𝐴 + -𝐴)) |
24 | 19 | recnd 7147 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℂ) |
25 | 24 | negidd 7409 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐴 + -𝐴) = 0) |
26 | 23, 25 | breqtrd 3809 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) < 0) |
27 | climge0.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
28 | 27 | ad2ant2r 492 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 0 ≤ (𝐹‘𝑘)) |
29 | 0red 7120 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 0 ∈ ℝ) | |
30 | 29, 18 | lenltd 7227 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (0 ≤ (𝐹‘𝑘) ↔ ¬ (𝐹‘𝑘) < 0)) |
31 | 28, 30 | mpbid 145 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ¬ (𝐹‘𝑘) < 0) |
32 | 26, 31 | pm2.21fal 1304 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ⊥) |
33 | 16, 32 | rexlimddv 2481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 0) → ⊥) |
34 | 33 | inegd 1303 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 0) |
35 | 0re 7119 | . . 3 ⊢ 0 ∈ ℝ | |
36 | lenlt 7187 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) | |
37 | 35, 6, 36 | sylancr 405 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
38 | 34, 37 | mpbird 165 | 1 ⊢ (𝜑 → 0 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ⊥wfal 1289 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 class class class wbr 3785 ‘cfv 4922 (class class class)co 5532 ℝcr 6980 0cc0 6981 + caddc 6984 < clt 7153 ≤ cle 7154 − cmin 7279 -cneg 7280 ℤcz 8351 ℤ≥cuz 8619 abscabs 9883 ⇝ cli 10117 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-rp 8735 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-clim 10118 |
This theorem is referenced by: climle 10172 |
Copyright terms: Public domain | W3C validator |