ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuci GIF version

Theorem elsuci 4158
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 4126 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2145 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 3113 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 182 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsni 3416 . . 3 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
65orim2i 710 . 2 ((𝐴𝐵𝐴 ∈ {𝐵}) → (𝐴𝐵𝐴 = 𝐵))
74, 6sylbi 119 1 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 661   = wceq 1284  wcel 1433  cun 2971  {csn 3398  suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-suc 4126
This theorem is referenced by:  trsucss  4178  onsucelsucexmid  4273  ordsoexmid  4305  ordsuc  4306  ordpwsucexmid  4313  nnsucelsuc  6093  nntri3or  6095  nnmordi  6112  nnaordex  6123  phplem3  6340
  Copyright terms: Public domain W3C validator