ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordex GIF version

Theorem nnaordex 6123
Description: Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordex ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnaordex
Dummy variables 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2142 . . . . . 6 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
2 eqeq2 2090 . . . . . . . 8 (𝑏 = 𝐵 → ((𝐴 +𝑜 𝑥) = 𝑏 ↔ (𝐴 +𝑜 𝑥) = 𝐵))
32anbi2d 451 . . . . . . 7 (𝑏 = 𝐵 → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
43rexbidv 2369 . . . . . 6 (𝑏 = 𝐵 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
51, 4imbi12d 232 . . . . 5 (𝑏 = 𝐵 → ((𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏)) ↔ (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))))
65imbi2d 228 . . . 4 (𝑏 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏))) ↔ (𝐴 ∈ ω → (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))))
7 eleq2 2142 . . . . . 6 (𝑏 = ∅ → (𝐴𝑏𝐴 ∈ ∅))
8 eqeq2 2090 . . . . . . . 8 (𝑏 = ∅ → ((𝐴 +𝑜 𝑥) = 𝑏 ↔ (𝐴 +𝑜 𝑥) = ∅))
98anbi2d 451 . . . . . . 7 (𝑏 = ∅ → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = ∅)))
109rexbidv 2369 . . . . . 6 (𝑏 = ∅ → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = ∅)))
117, 10imbi12d 232 . . . . 5 (𝑏 = ∅ → ((𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏)) ↔ (𝐴 ∈ ∅ → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = ∅))))
12 eleq2 2142 . . . . . 6 (𝑏 = 𝑦 → (𝐴𝑏𝐴𝑦))
13 eqeq2 2090 . . . . . . . 8 (𝑏 = 𝑦 → ((𝐴 +𝑜 𝑥) = 𝑏 ↔ (𝐴 +𝑜 𝑥) = 𝑦))
1413anbi2d 451 . . . . . . 7 (𝑏 = 𝑦 → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)))
1514rexbidv 2369 . . . . . 6 (𝑏 = 𝑦 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)))
1612, 15imbi12d 232 . . . . 5 (𝑏 = 𝑦 → ((𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏)) ↔ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))))
17 eleq2 2142 . . . . . 6 (𝑏 = suc 𝑦 → (𝐴𝑏𝐴 ∈ suc 𝑦))
18 eqeq2 2090 . . . . . . . 8 (𝑏 = suc 𝑦 → ((𝐴 +𝑜 𝑥) = 𝑏 ↔ (𝐴 +𝑜 𝑥) = suc 𝑦))
1918anbi2d 451 . . . . . . 7 (𝑏 = suc 𝑦 → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
2019rexbidv 2369 . . . . . 6 (𝑏 = suc 𝑦 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
2117, 20imbi12d 232 . . . . 5 (𝑏 = suc 𝑦 → ((𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏)) ↔ (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))))
22 noel 3255 . . . . . . 7 ¬ 𝐴 ∈ ∅
2322pm2.21i 607 . . . . . 6 (𝐴 ∈ ∅ → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = ∅))
2423a1i 9 . . . . 5 (𝐴 ∈ ω → (𝐴 ∈ ∅ → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = ∅)))
25 elsuci 4158 . . . . . . 7 (𝐴 ∈ suc 𝑦 → (𝐴𝑦𝐴 = 𝑦))
26 simpr 108 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)))
27 peano2 4336 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
2827ad2antlr 472 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)) → suc 𝑥 ∈ ω)
29 elelsuc 4164 . . . . . . . . . . . . . . . . 17 (∅ ∈ 𝑥 → ∅ ∈ suc 𝑥)
3029a1i 9 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥 → ∅ ∈ suc 𝑥))
31 nnasuc 6078 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +𝑜 suc 𝑥) = suc (𝐴 +𝑜 𝑥))
32 suceq 4157 . . . . . . . . . . . . . . . . . 18 ((𝐴 +𝑜 𝑥) = 𝑦 → suc (𝐴 +𝑜 𝑥) = suc 𝑦)
3331, 32sylan9eq 2133 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (𝐴 +𝑜 𝑥) = 𝑦) → (𝐴 +𝑜 suc 𝑥) = suc 𝑦)
3433ex 113 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +𝑜 𝑥) = 𝑦 → (𝐴 +𝑜 suc 𝑥) = suc 𝑦))
3530, 34anim12d 328 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦) → (∅ ∈ suc 𝑥 ∧ (𝐴 +𝑜 suc 𝑥) = suc 𝑦)))
3635imp 122 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)) → (∅ ∈ suc 𝑥 ∧ (𝐴 +𝑜 suc 𝑥) = suc 𝑦))
37 eleq2 2142 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑥 → (∅ ∈ 𝑧 ↔ ∅ ∈ suc 𝑥))
38 oveq2 5540 . . . . . . . . . . . . . . . . 17 (𝑧 = suc 𝑥 → (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 suc 𝑥))
3938eqeq1d 2089 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑥 → ((𝐴 +𝑜 𝑧) = suc 𝑦 ↔ (𝐴 +𝑜 suc 𝑥) = suc 𝑦))
4037, 39anbi12d 456 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑥 → ((∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦) ↔ (∅ ∈ suc 𝑥 ∧ (𝐴 +𝑜 suc 𝑥) = suc 𝑦)))
4140rspcev 2701 . . . . . . . . . . . . . 14 ((suc 𝑥 ∈ ω ∧ (∅ ∈ suc 𝑥 ∧ (𝐴 +𝑜 suc 𝑥) = suc 𝑦)) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦))
4228, 36, 41syl2anc 403 . . . . . . . . . . . . 13 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦))
4342ex 113 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦)))
4443rexlimdva 2477 . . . . . . . . . . 11 (𝐴 ∈ ω → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦)))
45 eleq2 2142 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (∅ ∈ 𝑧 ↔ ∅ ∈ 𝑥))
46 oveq2 5540 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑥))
4746eqeq1d 2089 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝐴 +𝑜 𝑧) = suc 𝑦 ↔ (𝐴 +𝑜 𝑥) = suc 𝑦))
4845, 47anbi12d 456 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
4948cbvrexv 2578 . . . . . . . . . . 11 (∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))
5044, 49syl6ib 159 . . . . . . . . . 10 (𝐴 ∈ ω → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
5150ad2antlr 472 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
5226, 51syld 44 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
53 0lt1o 6046 . . . . . . . . . . . 12 ∅ ∈ 1𝑜
5453a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → ∅ ∈ 1𝑜)
55 nnon 4350 . . . . . . . . . . . . 13 (𝐴 ∈ ω → 𝐴 ∈ On)
56 oa1suc 6070 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐴 +𝑜 1𝑜) = suc 𝐴)
5755, 56syl 14 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐴 +𝑜 1𝑜) = suc 𝐴)
58 suceq 4157 . . . . . . . . . . . 12 (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦)
5957, 58sylan9eq 2133 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → (𝐴 +𝑜 1𝑜) = suc 𝑦)
60 1onn 6116 . . . . . . . . . . . 12 1𝑜 ∈ ω
61 eleq2 2142 . . . . . . . . . . . . . 14 (𝑥 = 1𝑜 → (∅ ∈ 𝑥 ↔ ∅ ∈ 1𝑜))
62 oveq2 5540 . . . . . . . . . . . . . . 15 (𝑥 = 1𝑜 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 1𝑜))
6362eqeq1d 2089 . . . . . . . . . . . . . 14 (𝑥 = 1𝑜 → ((𝐴 +𝑜 𝑥) = suc 𝑦 ↔ (𝐴 +𝑜 1𝑜) = suc 𝑦))
6461, 63anbi12d 456 . . . . . . . . . . . . 13 (𝑥 = 1𝑜 → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦) ↔ (∅ ∈ 1𝑜 ∧ (𝐴 +𝑜 1𝑜) = suc 𝑦)))
6564rspcev 2701 . . . . . . . . . . . 12 ((1𝑜 ∈ ω ∧ (∅ ∈ 1𝑜 ∧ (𝐴 +𝑜 1𝑜) = suc 𝑦)) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))
6660, 65mpan 414 . . . . . . . . . . 11 ((∅ ∈ 1𝑜 ∧ (𝐴 +𝑜 1𝑜) = suc 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))
6754, 59, 66syl2anc 403 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))
6867ex 113 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 = 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
6968ad2antlr 472 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (𝐴 = 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
7052, 69jaod 669 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → ((𝐴𝑦𝐴 = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
7125, 70syl5 32 . . . . . 6 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))
7271exp31 356 . . . . 5 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)) → (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))))
7311, 16, 21, 24, 72finds2 4342 . . . 4 (𝑏 ∈ ω → (𝐴 ∈ ω → (𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏))))
746, 73vtoclga 2664 . . 3 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))))
7574impcom 123 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
76 peano1 4335 . . . . . . . . 9 ∅ ∈ ω
77 nnaord 6105 . . . . . . . . 9 ((∅ ∈ ω ∧ 𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝑥)))
7876, 77mp3an1 1255 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝑥)))
7978ancoms 264 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝑥)))
80 nna0 6076 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)
8180adantr 270 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +𝑜 ∅) = 𝐴)
8281eleq1d 2147 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝑥) ↔ 𝐴 ∈ (𝐴 +𝑜 𝑥)))
8379, 82bitrd 186 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +𝑜 𝑥)))
8483anbi1d 452 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) ↔ (𝐴 ∈ (𝐴 +𝑜 𝑥) ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
85 eleq2 2142 . . . . . 6 ((𝐴 +𝑜 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +𝑜 𝑥) ↔ 𝐴𝐵))
8685biimpac 292 . . . . 5 ((𝐴 ∈ (𝐴 +𝑜 𝑥) ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵)
8784, 86syl6bi 161 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵))
8887rexlimdva 2477 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵))
8988adantr 270 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵))
9075, 89impbid 127 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433  wrex 2349  c0 3251  Oncon0 4118  suc csuc 4120  ωcom 4331  (class class class)co 5532  1𝑜c1o 6017   +𝑜 coa 6021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028
This theorem is referenced by:  nnawordex  6124  ltexpi  6527
  Copyright terms: Public domain W3C validator