| Step | Hyp | Ref
| Expression |
| 1 | | eleq2 2142 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝐴 ∈ 𝑏 ↔ 𝐴 ∈ 𝐵)) |
| 2 | | eqeq2 2090 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((𝐴 +𝑜 𝑥) = 𝑏 ↔ (𝐴 +𝑜 𝑥) = 𝐵)) |
| 3 | 2 | anbi2d 451 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))) |
| 4 | 3 | rexbidv 2369 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))) |
| 5 | 1, 4 | imbi12d 232 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏)) ↔ (𝐴 ∈ 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))) |
| 6 | 5 | imbi2d 228 |
. . . 4
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏))) ↔ (𝐴 ∈ ω → (𝐴 ∈ 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))))) |
| 7 | | eleq2 2142 |
. . . . . 6
⊢ (𝑏 = ∅ → (𝐴 ∈ 𝑏 ↔ 𝐴 ∈ ∅)) |
| 8 | | eqeq2 2090 |
. . . . . . . 8
⊢ (𝑏 = ∅ → ((𝐴 +𝑜 𝑥) = 𝑏 ↔ (𝐴 +𝑜 𝑥) = ∅)) |
| 9 | 8 | anbi2d 451 |
. . . . . . 7
⊢ (𝑏 = ∅ → ((∅
∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = ∅))) |
| 10 | 9 | rexbidv 2369 |
. . . . . 6
⊢ (𝑏 = ∅ → (∃𝑥 ∈ ω (∅ ∈
𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = ∅))) |
| 11 | 7, 10 | imbi12d 232 |
. . . . 5
⊢ (𝑏 = ∅ → ((𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏)) ↔ (𝐴 ∈ ∅ → ∃𝑥 ∈ ω (∅ ∈
𝑥 ∧ (𝐴 +𝑜 𝑥) = ∅)))) |
| 12 | | eleq2 2142 |
. . . . . 6
⊢ (𝑏 = 𝑦 → (𝐴 ∈ 𝑏 ↔ 𝐴 ∈ 𝑦)) |
| 13 | | eqeq2 2090 |
. . . . . . . 8
⊢ (𝑏 = 𝑦 → ((𝐴 +𝑜 𝑥) = 𝑏 ↔ (𝐴 +𝑜 𝑥) = 𝑦)) |
| 14 | 13 | anbi2d 451 |
. . . . . . 7
⊢ (𝑏 = 𝑦 → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) |
| 15 | 14 | rexbidv 2369 |
. . . . . 6
⊢ (𝑏 = 𝑦 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) |
| 16 | 12, 15 | imbi12d 232 |
. . . . 5
⊢ (𝑏 = 𝑦 → ((𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏)) ↔ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)))) |
| 17 | | eleq2 2142 |
. . . . . 6
⊢ (𝑏 = suc 𝑦 → (𝐴 ∈ 𝑏 ↔ 𝐴 ∈ suc 𝑦)) |
| 18 | | eqeq2 2090 |
. . . . . . . 8
⊢ (𝑏 = suc 𝑦 → ((𝐴 +𝑜 𝑥) = 𝑏 ↔ (𝐴 +𝑜 𝑥) = suc 𝑦)) |
| 19 | 18 | anbi2d 451 |
. . . . . . 7
⊢ (𝑏 = suc 𝑦 → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 20 | 19 | rexbidv 2369 |
. . . . . 6
⊢ (𝑏 = suc 𝑦 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 21 | 17, 20 | imbi12d 232 |
. . . . 5
⊢ (𝑏 = suc 𝑦 → ((𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏)) ↔ (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)))) |
| 22 | | noel 3255 |
. . . . . . 7
⊢ ¬
𝐴 ∈
∅ |
| 23 | 22 | pm2.21i 607 |
. . . . . 6
⊢ (𝐴 ∈ ∅ →
∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) =
∅)) |
| 24 | 23 | a1i 9 |
. . . . 5
⊢ (𝐴 ∈ ω → (𝐴 ∈ ∅ →
∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) =
∅))) |
| 25 | | elsuci 4158 |
. . . . . . 7
⊢ (𝐴 ∈ suc 𝑦 → (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦)) |
| 26 | | simpr 108 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) |
| 27 | | peano2 4336 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ω → suc 𝑥 ∈
ω) |
| 28 | 27 | ad2antlr 472 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅
∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)) → suc 𝑥 ∈ ω) |
| 29 | | elelsuc 4164 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ 𝑥 → ∅
∈ suc 𝑥) |
| 30 | 29 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅
∈ 𝑥 → ∅
∈ suc 𝑥)) |
| 31 | | nnasuc 6078 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +𝑜 suc 𝑥) = suc (𝐴 +𝑜 𝑥)) |
| 32 | | suceq 4157 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 +𝑜 𝑥) = 𝑦 → suc (𝐴 +𝑜 𝑥) = suc 𝑦) |
| 33 | 31, 32 | sylan9eq 2133 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (𝐴 +𝑜 𝑥) = 𝑦) → (𝐴 +𝑜 suc 𝑥) = suc 𝑦) |
| 34 | 33 | ex 113 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +𝑜 𝑥) = 𝑦 → (𝐴 +𝑜 suc 𝑥) = suc 𝑦)) |
| 35 | 30, 34 | anim12d 328 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) →
((∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) = 𝑦) → (∅ ∈ suc 𝑥 ∧ (𝐴 +𝑜 suc 𝑥) = suc 𝑦))) |
| 36 | 35 | imp 122 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅
∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)) → (∅ ∈ suc 𝑥 ∧ (𝐴 +𝑜 suc 𝑥) = suc 𝑦)) |
| 37 | | eleq2 2142 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑥 → (∅ ∈ 𝑧 ↔ ∅ ∈ suc 𝑥)) |
| 38 | | oveq2 5540 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = suc 𝑥 → (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 suc 𝑥)) |
| 39 | 38 | eqeq1d 2089 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑥 → ((𝐴 +𝑜 𝑧) = suc 𝑦 ↔ (𝐴 +𝑜 suc 𝑥) = suc 𝑦)) |
| 40 | 37, 39 | anbi12d 456 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc 𝑥 → ((∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦) ↔ (∅ ∈ suc 𝑥 ∧ (𝐴 +𝑜 suc 𝑥) = suc 𝑦))) |
| 41 | 40 | rspcev 2701 |
. . . . . . . . . . . . . 14
⊢ ((suc
𝑥 ∈ ω ∧
(∅ ∈ suc 𝑥 ∧
(𝐴 +𝑜
suc 𝑥) = suc 𝑦)) → ∃𝑧 ∈ ω (∅ ∈
𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦)) |
| 42 | 28, 36, 41 | syl2anc 403 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅
∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦)) |
| 43 | 42 | ex 113 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) →
((∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) = 𝑦) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦))) |
| 44 | 43 | rexlimdva 2477 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω →
(∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) = 𝑦) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦))) |
| 45 | | eleq2 2142 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (∅ ∈ 𝑧 ↔ ∅ ∈ 𝑥)) |
| 46 | | oveq2 5540 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑥)) |
| 47 | 46 | eqeq1d 2089 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → ((𝐴 +𝑜 𝑧) = suc 𝑦 ↔ (𝐴 +𝑜 𝑥) = suc 𝑦)) |
| 48 | 45, 47 | anbi12d 456 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → ((∅ ∈ 𝑧 ∧ (𝐴 +𝑜 𝑧) = suc 𝑦) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 49 | 48 | cbvrexv 2578 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
ω (∅ ∈ 𝑧
∧ (𝐴
+𝑜 𝑧) =
suc 𝑦) ↔ ∃𝑥 ∈ ω (∅ ∈
𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)) |
| 50 | 44, 49 | syl6ib 159 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω →
(∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 51 | 50 | ad2antlr 472 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 52 | 26, 51 | syld 44 |
. . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 53 | | 0lt1o 6046 |
. . . . . . . . . . . 12
⊢ ∅
∈ 1𝑜 |
| 54 | 53 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → ∅ ∈
1𝑜) |
| 55 | | nnon 4350 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| 56 | | oa1suc 6070 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → (𝐴 +𝑜
1𝑜) = suc 𝐴) |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → (𝐴 +𝑜
1𝑜) = suc 𝐴) |
| 58 | | suceq 4157 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦) |
| 59 | 57, 58 | sylan9eq 2133 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → (𝐴 +𝑜
1𝑜) = suc 𝑦) |
| 60 | | 1onn 6116 |
. . . . . . . . . . . 12
⊢
1𝑜 ∈ ω |
| 61 | | eleq2 2142 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1𝑜 →
(∅ ∈ 𝑥 ↔
∅ ∈ 1𝑜)) |
| 62 | | oveq2 5540 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 1𝑜 →
(𝐴 +𝑜
𝑥) = (𝐴 +𝑜
1𝑜)) |
| 63 | 62 | eqeq1d 2089 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1𝑜 →
((𝐴 +𝑜
𝑥) = suc 𝑦 ↔ (𝐴 +𝑜
1𝑜) = suc 𝑦)) |
| 64 | 61, 63 | anbi12d 456 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1𝑜 →
((∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) = suc 𝑦) ↔ (∅ ∈
1𝑜 ∧ (𝐴 +𝑜
1𝑜) = suc 𝑦))) |
| 65 | 64 | rspcev 2701 |
. . . . . . . . . . . 12
⊢
((1𝑜 ∈ ω ∧ (∅ ∈
1𝑜 ∧ (𝐴 +𝑜
1𝑜) = suc 𝑦)) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)) |
| 66 | 60, 65 | mpan 414 |
. . . . . . . . . . 11
⊢ ((∅
∈ 1𝑜 ∧ (𝐴 +𝑜
1𝑜) = suc 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)) |
| 67 | 54, 59, 66 | syl2anc 403 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦)) |
| 68 | 67 | ex 113 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐴 = 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 69 | 68 | ad2antlr 472 |
. . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (𝐴 = 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 70 | 52, 69 | jaod 669 |
. . . . . . 7
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 71 | 25, 70 | syl5 32 |
. . . . . 6
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦))) → (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))) |
| 72 | 71 | exp31 356 |
. . . . 5
⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑦)) → (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = suc 𝑦))))) |
| 73 | 11, 16, 21, 24, 72 | finds2 4342 |
. . . 4
⊢ (𝑏 ∈ ω → (𝐴 ∈ ω → (𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝑏)))) |
| 74 | 6, 73 | vtoclga 2664 |
. . 3
⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ∈ 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))) |
| 75 | 74 | impcom 123 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))) |
| 76 | | peano1 4335 |
. . . . . . . . 9
⊢ ∅
∈ ω |
| 77 | | nnaord 6105 |
. . . . . . . . 9
⊢ ((∅
∈ ω ∧ 𝑥
∈ ω ∧ 𝐴
∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +𝑜 ∅) ∈
(𝐴 +𝑜
𝑥))) |
| 78 | 76, 77 | mp3an1 1255 |
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅
∈ 𝑥 ↔ (𝐴 +𝑜 ∅)
∈ (𝐴
+𝑜 𝑥))) |
| 79 | 78 | ancoms 264 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅
∈ 𝑥 ↔ (𝐴 +𝑜 ∅)
∈ (𝐴
+𝑜 𝑥))) |
| 80 | | nna0 6076 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐴 +𝑜 ∅)
= 𝐴) |
| 81 | 80 | adantr 270 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +𝑜 ∅)
= 𝐴) |
| 82 | 81 | eleq1d 2147 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +𝑜 ∅)
∈ (𝐴
+𝑜 𝑥)
↔ 𝐴 ∈ (𝐴 +𝑜 𝑥))) |
| 83 | 79, 82 | bitrd 186 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅
∈ 𝑥 ↔ 𝐴 ∈ (𝐴 +𝑜 𝑥))) |
| 84 | 83 | anbi1d 452 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) →
((∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) = 𝐵) ↔ (𝐴 ∈ (𝐴 +𝑜 𝑥) ∧ (𝐴 +𝑜 𝑥) = 𝐵))) |
| 85 | | eleq2 2142 |
. . . . . 6
⊢ ((𝐴 +𝑜 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +𝑜 𝑥) ↔ 𝐴 ∈ 𝐵)) |
| 86 | 85 | biimpac 292 |
. . . . 5
⊢ ((𝐴 ∈ (𝐴 +𝑜 𝑥) ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴 ∈ 𝐵) |
| 87 | 84, 86 | syl6bi 161 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) →
((∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) = 𝐵) → 𝐴 ∈ 𝐵)) |
| 88 | 87 | rexlimdva 2477 |
. . 3
⊢ (𝐴 ∈ ω →
(∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) = 𝐵) → 𝐴 ∈ 𝐵)) |
| 89 | 88 | adantr 270 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +𝑜
𝑥) = 𝐵) → 𝐴 ∈ 𝐵)) |
| 90 | 75, 89 | impbid 127 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))) |