| Step | Hyp | Ref
| Expression |
| 1 | | elnn 4346 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| 2 | 1 | expcom 114 |
. . . . 5
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → 𝐴 ∈ ω)) |
| 3 | | eleq2 2142 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
| 4 | | oveq2 5540 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 𝐵)) |
| 5 | 4 | eleq2d 2148 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))) |
| 6 | 3, 5 | imbi12d 232 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ 𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))) |
| 7 | 6 | imbi2d 228 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥))) ↔ (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))) |
| 8 | | eleq2 2142 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅)) |
| 9 | | oveq2 5540 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝐶 ·𝑜
𝑥) = (𝐶 ·𝑜
∅)) |
| 10 | 9 | eleq2d 2148 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ((𝐶 ·𝑜
𝐴) ∈ (𝐶 ·𝑜
𝑥) ↔ (𝐶 ·𝑜
𝐴) ∈ (𝐶 ·𝑜
∅))) |
| 11 | 8, 10 | imbi12d 232 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝐴 ∈ 𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜
∅)))) |
| 12 | | eleq2 2142 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| 13 | | oveq2 5540 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 𝑦)) |
| 14 | 13 | eleq2d 2148 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦))) |
| 15 | 12, 14 | imbi12d 232 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) |
| 16 | | eleq2 2142 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦)) |
| 17 | | oveq2 5540 |
. . . . . . . . . . . 12
⊢ (𝑥 = suc 𝑦 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 suc 𝑦)) |
| 18 | 17 | eleq2d 2148 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))) |
| 19 | 16, 18 | imbi12d 232 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑦 → ((𝐴 ∈ 𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))) |
| 20 | | noel 3255 |
. . . . . . . . . . . 12
⊢ ¬
𝐴 ∈
∅ |
| 21 | 20 | pm2.21i 607 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ∅ → (𝐶 ·𝑜
𝐴) ∈ (𝐶 ·𝑜
∅)) |
| 22 | 21 | a1i 9 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ ∅ → (𝐶 ·𝑜
𝐴) ∈ (𝐶 ·𝑜
∅))) |
| 23 | | elsuci 4158 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ suc 𝑦 → (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦)) |
| 24 | | nnmcl 6083 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·𝑜
𝑦) ∈
ω) |
| 25 | | simpl 107 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → 𝐶 ∈
ω) |
| 26 | 24, 25 | jca 300 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈
ω)) |
| 27 | | nnaword1 6109 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) →
(𝐶
·𝑜 𝑦) ⊆ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)) |
| 28 | 27 | sseld 2998 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) →
((𝐶
·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 29 | 28 | imim2d 53 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) →
((𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))) |
| 30 | 29 | imp 122 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) ∧
(𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦))) → (𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 31 | 30 | adantrl 461 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) ∧
(∅ ∈ 𝐶 ∧
(𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 32 | | nna0 6076 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐶 ·𝑜
𝑦) ∈ ω →
((𝐶
·𝑜 𝑦) +𝑜 ∅) = (𝐶 ·𝑜
𝑦)) |
| 33 | 32 | ad2antrr 471 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) ∧
∅ ∈ 𝐶) →
((𝐶
·𝑜 𝑦) +𝑜 ∅) = (𝐶 ·𝑜
𝑦)) |
| 34 | | nnaordi 6104 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐶 ∈ ω ∧ (𝐶 ·𝑜
𝑦) ∈ ω) →
(∅ ∈ 𝐶 →
((𝐶
·𝑜 𝑦) +𝑜 ∅) ∈
((𝐶
·𝑜 𝑦) +𝑜 𝐶))) |
| 35 | 34 | ancoms 264 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) →
(∅ ∈ 𝐶 →
((𝐶
·𝑜 𝑦) +𝑜 ∅) ∈
((𝐶
·𝑜 𝑦) +𝑜 𝐶))) |
| 36 | 35 | imp 122 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) ∧
∅ ∈ 𝐶) →
((𝐶
·𝑜 𝑦) +𝑜 ∅) ∈
((𝐶
·𝑜 𝑦) +𝑜 𝐶)) |
| 37 | 33, 36 | eqeltrrd 2156 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) ∧
∅ ∈ 𝐶) →
(𝐶
·𝑜 𝑦) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)) |
| 38 | | oveq2 5540 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝑦)) |
| 39 | 38 | eleq1d 2147 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 = 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶) ↔ (𝐶 ·𝑜 𝑦) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 40 | 37, 39 | syl5ibrcom 155 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) ∧
∅ ∈ 𝐶) →
(𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 41 | 40 | adantrr 462 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) ∧
(∅ ∈ 𝐶 ∧
(𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 42 | 31, 41 | jaod 669 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 ·𝑜
𝑦) ∈ ω ∧
𝐶 ∈ ω) ∧
(∅ ∈ 𝐶 ∧
(𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 43 | 26, 42 | sylan 277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅
∈ 𝐶 ∧ (𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 44 | 23, 43 | syl5 32 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅
∈ 𝐶 ∧ (𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 45 | | nnmsuc 6079 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·𝑜
suc 𝑦) = ((𝐶 ·𝑜
𝑦) +𝑜
𝐶)) |
| 46 | 45 | eleq2d 2148 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·𝑜
𝐴) ∈ (𝐶 ·𝑜
suc 𝑦) ↔ (𝐶 ·𝑜
𝐴) ∈ ((𝐶 ·𝑜
𝑦) +𝑜
𝐶))) |
| 47 | 46 | adantr 270 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅
∈ 𝐶 ∧ (𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦) ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))) |
| 48 | 44, 47 | sylibrd 167 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅
∈ 𝐶 ∧ (𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))) |
| 49 | 48 | exp43 364 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ω → (𝑦 ∈ ω → (∅
∈ 𝐶 → ((𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))))) |
| 50 | 49 | com12 30 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ω → (𝐶 ∈ ω → (∅
∈ 𝐶 → ((𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))))) |
| 51 | 50 | adantld 272 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅
∈ 𝐶 → ((𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))))) |
| 52 | 51 | impd 251 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → ((𝐴 ∈ 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))) |
| 53 | 11, 15, 19, 22, 52 | finds2 4342 |
. . . . . . . . 9
⊢ (𝑥 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)))) |
| 54 | 7, 53 | vtoclga 2664 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))) |
| 55 | 54 | com23 77 |
. . . . . . 7
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))) |
| 56 | 55 | exp4a 358 |
. . . . . 6
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈
𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))) |
| 57 | 56 | exp4a 358 |
. . . . 5
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → (𝐴 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))) |
| 58 | 2, 57 | mpdd 40 |
. . . 4
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))) |
| 59 | 58 | com34 82 |
. . 3
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → (∅ ∈ 𝐶 → (𝐶 ∈ ω → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))) |
| 60 | 59 | com24 86 |
. 2
⊢ (𝐵 ∈ ω → (𝐶 ∈ ω → (∅
∈ 𝐶 → (𝐴 ∈ 𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))) |
| 61 | 60 | imp31 252 |
1
⊢ (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))) |