ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epini GIF version

Theorem epini 4716
Description: Any set is equal to its preimage under the converse epsilon relation. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
epini.1 𝐴 ∈ V
Assertion
Ref Expression
epini ( E “ {𝐴}) = 𝐴

Proof of Theorem epini
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 epini.1 . . . 4 𝐴 ∈ V
2 vex 2604 . . . . 5 𝑥 ∈ V
32eliniseg 4715 . . . 4 (𝐴 ∈ V → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴))
41, 3ax-mp 7 . . 3 (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴)
51epelc 4046 . . 3 (𝑥 E 𝐴𝑥𝐴)
64, 5bitri 182 . 2 (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥𝐴)
76eqriv 2078 1 ( E “ {𝐴}) = 𝐴
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  wcel 1433  Vcvv 2601  {csn 3398   class class class wbr 3785   E cep 4042  ccnv 4362  cima 4366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-eprel 4044  df-xp 4369  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator