ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv2f GIF version

Theorem eqfnfv2f 5290
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5286 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
Hypotheses
Ref Expression
eqfnfv2f.1 𝑥𝐹
eqfnfv2f.2 𝑥𝐺
Assertion
Ref Expression
eqfnfv2f ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem eqfnfv2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5286 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
2 eqfnfv2f.1 . . . . 5 𝑥𝐹
3 nfcv 2219 . . . . 5 𝑥𝑧
42, 3nffv 5205 . . . 4 𝑥(𝐹𝑧)
5 eqfnfv2f.2 . . . . 5 𝑥𝐺
65, 3nffv 5205 . . . 4 𝑥(𝐺𝑧)
74, 6nfeq 2226 . . 3 𝑥(𝐹𝑧) = (𝐺𝑧)
8 nfv 1461 . . 3 𝑧(𝐹𝑥) = (𝐺𝑥)
9 fveq2 5198 . . . 4 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
10 fveq2 5198 . . . 4 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
119, 10eqeq12d 2095 . . 3 (𝑧 = 𝑥 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑥) = (𝐺𝑥)))
127, 8, 11cbvral 2573 . 2 (∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
131, 12syl6bb 194 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wnfc 2206  wral 2348   Fn wfn 4917  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator