ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstr3i GIF version

Theorem eqsstr3i 3030
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
Hypotheses
Ref Expression
eqsstr3.1 𝐵 = 𝐴
eqsstr3.2 𝐵𝐶
Assertion
Ref Expression
eqsstr3i 𝐴𝐶

Proof of Theorem eqsstr3i
StepHypRef Expression
1 eqsstr3.1 . . 3 𝐵 = 𝐴
21eqcomi 2085 . 2 𝐴 = 𝐵
3 eqsstr3.2 . 2 𝐵𝐶
42, 3eqsstri 3029 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986
This theorem is referenced by:  inss2  3187  dmv  4569  resasplitss  5089  ofrfval  5740  fnofval  5741  ofrval  5742  off  5744  ofres  5745  ofco  5749  dftpos4  5901  smores2  5932  bcm1k  9687  bcpasc  9693
  Copyright terms: Public domain W3C validator