ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnofval GIF version

Theorem fnofval 5741
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
ofval.8 (𝜑𝑅 Fn (𝑈 × 𝑉))
ofval.9 (𝜑𝐶𝑈)
ofval.10 (𝜑𝐷𝑉)
Assertion
Ref Expression
fnofval ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))

Proof of Theorem fnofval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . 5 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . 5 (𝜑𝐴𝑉)
4 offval.4 . . . . 5 (𝜑𝐵𝑊)
5 offval.5 . . . . 5 (𝐴𝐵) = 𝑆
6 eqidd 2082 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2082 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 5739 . . . 4 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
98fveq1d 5200 . . 3 (𝜑 → ((𝐹𝑓 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
109adantr 270 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
11 simpr 108 . . 3 ((𝜑𝑋𝑆) → 𝑋𝑆)
12 ofval.8 . . . . 5 (𝜑𝑅 Fn (𝑈 × 𝑉))
1312adantr 270 . . . 4 ((𝜑𝑋𝑆) → 𝑅 Fn (𝑈 × 𝑉))
14 ofval.9 . . . . . 6 (𝜑𝐶𝑈)
1514adantr 270 . . . . 5 ((𝜑𝑋𝑆) → 𝐶𝑈)
16 inss1 3186 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
175, 16eqsstr3i 3030 . . . . . . . 8 𝑆𝐴
1817sseli 2995 . . . . . . 7 (𝑋𝑆𝑋𝐴)
19 ofval.6 . . . . . . 7 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2018, 19sylan2 280 . . . . . 6 ((𝜑𝑋𝑆) → (𝐹𝑋) = 𝐶)
2120eleq1d 2147 . . . . 5 ((𝜑𝑋𝑆) → ((𝐹𝑋) ∈ 𝑈𝐶𝑈))
2215, 21mpbird 165 . . . 4 ((𝜑𝑋𝑆) → (𝐹𝑋) ∈ 𝑈)
23 ofval.10 . . . . . 6 (𝜑𝐷𝑉)
2423adantr 270 . . . . 5 ((𝜑𝑋𝑆) → 𝐷𝑉)
25 inss2 3187 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
265, 25eqsstr3i 3030 . . . . . . . 8 𝑆𝐵
2726sseli 2995 . . . . . . 7 (𝑋𝑆𝑋𝐵)
28 ofval.7 . . . . . . 7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2927, 28sylan2 280 . . . . . 6 ((𝜑𝑋𝑆) → (𝐺𝑋) = 𝐷)
3029eleq1d 2147 . . . . 5 ((𝜑𝑋𝑆) → ((𝐺𝑋) ∈ 𝑉𝐷𝑉))
3124, 30mpbird 165 . . . 4 ((𝜑𝑋𝑆) → (𝐺𝑋) ∈ 𝑉)
32 fnovex 5558 . . . 4 ((𝑅 Fn (𝑈 × 𝑉) ∧ (𝐹𝑋) ∈ 𝑈 ∧ (𝐺𝑋) ∈ 𝑉) → ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ V)
3313, 22, 31, 32syl3anc 1169 . . 3 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ V)
34 fveq2 5198 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
35 fveq2 5198 . . . . 5 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
3634, 35oveq12d 5550 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑋)𝑅(𝐺𝑋)))
37 eqid 2081 . . . 4 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
3836, 37fvmptg 5269 . . 3 ((𝑋𝑆 ∧ ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ V) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
3911, 33, 38syl2anc 403 . 2 ((𝜑𝑋𝑆) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
4020, 29oveq12d 5550 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) = (𝐶𝑅𝐷))
4110, 39, 403eqtrd 2117 1 ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  Vcvv 2601  cin 2972  cmpt 3839   × cxp 4361   Fn wfn 4917  cfv 4922  (class class class)co 5532  𝑓 cof 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-of 5732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator