ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofinvl GIF version

Theorem caofinvl 5753
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofinv.3 (𝜑𝐵𝑊)
caofinv.4 (𝜑𝑁:𝑆𝑆)
caofinv.5 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
caofinvl.6 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
Assertion
Ref Expression
caofinvl (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑣,𝐴   𝑣,𝐹,𝑥   𝑥,𝑁,𝑣   𝑣,𝑆   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑣)   𝑅(𝑣)   𝐺(𝑣)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem caofinvl
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4 (𝜑𝐴𝑉)
2 caofinv.4 . . . . . . . . 9 (𝜑𝑁:𝑆𝑆)
32adantr 270 . . . . . . . 8 ((𝜑𝑣𝐴) → 𝑁:𝑆𝑆)
4 caofref.2 . . . . . . . . 9 (𝜑𝐹:𝐴𝑆)
54ffvelrnda 5323 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ 𝑆)
63, 5ffvelrnd 5324 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑁‘(𝐹𝑣)) ∈ 𝑆)
7 eqid 2081 . . . . . . 7 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))
86, 7fmptd 5343 . . . . . 6 (𝜑 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆)
9 caofinv.5 . . . . . . 7 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
109feq1d 5054 . . . . . 6 (𝜑 → (𝐺:𝐴𝑆 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆))
118, 10mpbird 165 . . . . 5 (𝜑𝐺:𝐴𝑆)
1211ffvelrnda 5323 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
134ffvelrnda 5323 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
146ralrimiva 2434 . . . . . . 7 (𝜑 → ∀𝑣𝐴 (𝑁‘(𝐹𝑣)) ∈ 𝑆)
157fnmpt 5045 . . . . . . 7 (∀𝑣𝐴 (𝑁‘(𝐹𝑣)) ∈ 𝑆 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴)
1614, 15syl 14 . . . . . 6 (𝜑 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴)
179fneq1d 5009 . . . . . 6 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴))
1816, 17mpbird 165 . . . . 5 (𝜑𝐺 Fn 𝐴)
19 dffn5im 5240 . . . . 5 (𝐺 Fn 𝐴𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
2018, 19syl 14 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
214feqmptd 5247 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
221, 12, 13, 20, 21offval2 5746 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
239fveq1d 5200 . . . . . . . 8 (𝜑 → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
2423adantr 270 . . . . . . 7 ((𝜑𝑤𝐴) → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
25 simpr 108 . . . . . . . 8 ((𝜑𝑤𝐴) → 𝑤𝐴)
262adantr 270 . . . . . . . . 9 ((𝜑𝑤𝐴) → 𝑁:𝑆𝑆)
2726, 13ffvelrnd 5324 . . . . . . . 8 ((𝜑𝑤𝐴) → (𝑁‘(𝐹𝑤)) ∈ 𝑆)
28 fveq2 5198 . . . . . . . . . 10 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
2928fveq2d 5202 . . . . . . . . 9 (𝑣 = 𝑤 → (𝑁‘(𝐹𝑣)) = (𝑁‘(𝐹𝑤)))
3029, 7fvmptg 5269 . . . . . . . 8 ((𝑤𝐴 ∧ (𝑁‘(𝐹𝑤)) ∈ 𝑆) → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
3125, 27, 30syl2anc 403 . . . . . . 7 ((𝜑𝑤𝐴) → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
3224, 31eqtrd 2113 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝑁‘(𝐹𝑤)))
3332oveq1d 5547 . . . . 5 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
34 caofinvl.6 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
3534ralrimiva 2434 . . . . . . 7 (𝜑 → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3635adantr 270 . . . . . 6 ((𝜑𝑤𝐴) → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
37 fveq2 5198 . . . . . . . . 9 (𝑥 = (𝐹𝑤) → (𝑁𝑥) = (𝑁‘(𝐹𝑤)))
38 id 19 . . . . . . . . 9 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
3937, 38oveq12d 5550 . . . . . . . 8 (𝑥 = (𝐹𝑤) → ((𝑁𝑥)𝑅𝑥) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
4039eqeq1d 2089 . . . . . . 7 (𝑥 = (𝐹𝑤) → (((𝑁𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵))
4140rspcva 2699 . . . . . 6 (((𝐹𝑤) ∈ 𝑆 ∧ ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
4213, 36, 41syl2anc 403 . . . . 5 ((𝜑𝑤𝐴) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
4333, 42eqtrd 2113 . . . 4 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = 𝐵)
4443mpteq2dva 3868 . . 3 (𝜑 → (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))) = (𝑤𝐴𝐵))
4522, 44eqtrd 2113 . 2 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴𝐵))
46 fconstmpt 4405 . 2 (𝐴 × {𝐵}) = (𝑤𝐴𝐵)
4745, 46syl6eqr 2131 1 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  {csn 3398  cmpt 3839   × cxp 4361   Fn wfn 4917  wf 4918  cfv 4922  (class class class)co 5532  𝑓 cof 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-of 5732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator