| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnimapr | GIF version | ||
| Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| fnimapr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnfv 5253 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) | |
| 2 | 1 | 3adant3 958 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| 3 | fnsnfv 5253 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) | |
| 4 | 3 | 3adant2 957 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) |
| 5 | 2, 4 | uneq12d 3127 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))) |
| 6 | 5 | eqcomd 2086 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)})) |
| 7 | df-pr 3405 | . . . 4 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
| 8 | 7 | imaeq2i 4686 | . . 3 ⊢ (𝐹 “ {𝐵, 𝐶}) = (𝐹 “ ({𝐵} ∪ {𝐶})) |
| 9 | imaundi 4756 | . . 3 ⊢ (𝐹 “ ({𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) | |
| 10 | 8, 9 | eqtri 2101 | . 2 ⊢ (𝐹 “ {𝐵, 𝐶}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) |
| 11 | df-pr 3405 | . 2 ⊢ {(𝐹‘𝐵), (𝐹‘𝐶)} = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) | |
| 12 | 6, 10, 11 | 3eqtr4g 2138 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 ∪ cun 2971 {csn 3398 {cpr 3399 “ cima 4366 Fn wfn 4917 ‘cfv 4922 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 |
| This theorem is referenced by: fvinim0ffz 9250 |
| Copyright terms: Public domain | W3C validator |