| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnssresb | GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| fnssresb | ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 4925 | . 2 ⊢ ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵)) | |
| 2 | fnfun 5016 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | funres 4961 | . . . . 5 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐵)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun (𝐹 ↾ 𝐵)) |
| 5 | 4 | biantrurd 299 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵))) |
| 6 | ssdmres 4651 | . . . 4 ⊢ (𝐵 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐵) = 𝐵) | |
| 7 | fndm 5018 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 8 | 7 | sseq2d 3027 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 9 | 6, 8 | syl5bbr 192 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| 10 | 5, 9 | bitr3d 188 | . 2 ⊢ (𝐹 Fn 𝐴 → ((Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = 𝐵) ↔ 𝐵 ⊆ 𝐴)) |
| 11 | 1, 10 | syl5bb 190 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ⊆ wss 2973 dom cdm 4363 ↾ cres 4365 Fun wfun 4916 Fn wfn 4917 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-res 4375 df-fun 4924 df-fn 4925 |
| This theorem is referenced by: fnssres 5032 |
| Copyright terms: Public domain | W3C validator |