ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdif Unicode version

Theorem invdif 3206
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)

Proof of Theorem invdif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . . . 5  |-  x  e. 
_V
2 eldif 2982 . . . . 5  |-  ( x  e.  ( _V  \  B )  <->  ( x  e.  _V  /\  -.  x  e.  B ) )
31, 2mpbiran 881 . . . 4  |-  ( x  e.  ( _V  \  B )  <->  -.  x  e.  B )
43anbi2i 444 . . 3  |-  ( ( x  e.  A  /\  x  e.  ( _V  \  B ) )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
5 elin 3155 . . 3  |-  ( x  e.  ( A  i^i  ( _V  \  B ) )  <->  ( x  e.  A  /\  x  e.  ( _V  \  B
) ) )
6 eldif 2982 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
74, 5, 63bitr4i 210 . 2  |-  ( x  e.  ( A  i^i  ( _V  \  B ) )  <->  x  e.  ( A  \  B ) )
87eqriv 2078 1  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601    \ cdif 2970    i^i cin 2972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-in 2979
This theorem is referenced by:  indif2  3208  difundir  3217  difindir  3219  difdif2ss  3221  difun1  3224  difdifdirss  3327  nn0supp  8340
  Copyright terms: Public domain W3C validator