| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota2d | GIF version | ||
| Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) |
| iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iota2d | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | iota2df.2 | . 2 ⊢ (𝜑 → ∃!𝑥𝜓) | |
| 3 | iota2df.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 4 | nfv 1461 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfvd 1462 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 6 | nfcvd 2220 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | iota2df 4911 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃!weu 1941 ℩cio 4885 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-iota 4887 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |