ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopab GIF version

Theorem iunopab 4036
Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
iunopab 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝑧   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem iunopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elopab 4013 . . . . 5 (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
21rexbii 2373 . . . 4 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 rexcom4 2622 . . . . 5 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 rexcom4 2622 . . . . . . 7 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 r19.42v 2511 . . . . . . . 8 (∃𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
65exbii 1536 . . . . . . 7 (∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
74, 6bitri 182 . . . . . 6 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
87exbii 1536 . . . . 5 (∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
93, 8bitri 182 . . . 4 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
102, 9bitri 182 . . 3 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
1110abbii 2194 . 2 {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
12 df-iun 3680 . 2 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}}
13 df-opab 3840 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
1411, 12, 133eqtr4i 2111 1 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  wex 1421  wcel 1433  {cab 2067  wrex 2349  cop 3401   ciun 3678  {copab 3838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-iun 3680  df-opab 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator