ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabm GIF version

Theorem opabm 4035
Description: Inhabited ordered pair class abstraction. (Contributed by Jim Kingdon, 29-Sep-2018.)
Assertion
Ref Expression
opabm (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝜑)
Distinct variable groups:   𝜑,𝑧   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabm
StepHypRef Expression
1 elopab 4013 . . 3 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
21exbii 1536 . 2 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 exrot3 1620 . 2 (∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 vex 2604 . . . . . 6 𝑥 ∈ V
5 vex 2604 . . . . . 6 𝑦 ∈ V
64, 5opex 3984 . . . . 5 𝑥, 𝑦⟩ ∈ V
76isseti 2607 . . . 4 𝑧 𝑧 = ⟨𝑥, 𝑦
8 19.41v 1823 . . . 4 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
97, 8mpbiran 881 . . 3 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)
1092exbii 1537 . 2 (∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
112, 3, 103bitri 204 1 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  cop 3401  {copab 3838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator