ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemasr GIF version

Theorem caucvgsrlemasr 6966
Description: Lemma for caucvgsr 6978. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
Hypothesis
Ref Expression
caucvgsrlemasr.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
Assertion
Ref Expression
caucvgsrlemasr (𝜑𝐴R)
Distinct variable group:   𝐴,𝑚
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑚)

Proof of Theorem caucvgsrlemasr
StepHypRef Expression
1 caucvgsrlemasr.bnd . . 3 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
2 ltrelsr 6915 . . . . . 6 <R ⊆ (R × R)
32brel 4410 . . . . 5 (𝐴 <R (𝐹𝑚) → (𝐴R ∧ (𝐹𝑚) ∈ R))
43simpld 110 . . . 4 (𝐴 <R (𝐹𝑚) → 𝐴R)
54ralimi 2426 . . 3 (∀𝑚N 𝐴 <R (𝐹𝑚) → ∀𝑚N 𝐴R)
61, 5syl 14 . 2 (𝜑 → ∀𝑚N 𝐴R)
7 1pi 6505 . . 3 1𝑜N
8 elex2 2615 . . 3 (1𝑜N → ∃𝑥 𝑥N)
9 r19.3rmv 3332 . . 3 (∃𝑥 𝑥N → (𝐴R ↔ ∀𝑚N 𝐴R))
107, 8, 9mp2b 8 . 2 (𝐴R ↔ ∀𝑚N 𝐴R)
116, 10sylibr 132 1 (𝜑𝐴R)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wex 1421  wcel 1433  wral 2348   class class class wbr 3785  cfv 4922  1𝑜c1o 6017  Ncnpi 6462  Rcnr 6487   <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-suc 4126  df-iom 4332  df-xp 4369  df-1o 6024  df-ni 6494  df-ltr 6907
This theorem is referenced by:  caucvgsrlemoffval  6972  caucvgsrlemofff  6973  caucvgsrlemoffcau  6974  caucvgsrlemoffgt1  6975  caucvgsrlemoffres  6976
  Copyright terms: Public domain W3C validator