![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rec1nq | GIF version |
Description: Reciprocal of positive fraction one. (Contributed by Jim Kingdon, 29-Dec-2019.) |
Ref | Expression |
---|---|
rec1nq | ⊢ (*Q‘1Q) = 1Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nq 6556 | . . . 4 ⊢ 1Q ∈ Q | |
2 | recclnq 6582 | . . . 4 ⊢ (1Q ∈ Q → (*Q‘1Q) ∈ Q) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ (*Q‘1Q) ∈ Q |
4 | mulcomnqg 6573 | . . 3 ⊢ (((*Q‘1Q) ∈ Q ∧ 1Q ∈ Q) → ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q))) | |
5 | 3, 1, 4 | mp2an 416 | . 2 ⊢ ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q)) |
6 | mulidnq 6579 | . . 3 ⊢ ((*Q‘1Q) ∈ Q → ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q)) | |
7 | 1, 2, 6 | mp2b 8 | . 2 ⊢ ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q) |
8 | recidnq 6583 | . . 3 ⊢ (1Q ∈ Q → (1Q ·Q (*Q‘1Q)) = 1Q) | |
9 | 1, 8 | ax-mp 7 | . 2 ⊢ (1Q ·Q (*Q‘1Q)) = 1Q |
10 | 5, 7, 9 | 3eqtr3i 2109 | 1 ⊢ (*Q‘1Q) = 1Q |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 ‘cfv 4922 (class class class)co 5532 Qcnq 6470 1Qc1q 6471 ·Q cmq 6473 *Qcrq 6474 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-mi 6496 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 |
This theorem is referenced by: recexprlem1ssl 6823 caucvgprlemm 6858 caucvgprprlemmu 6885 caucvgsr 6978 |
Copyright terms: Public domain | W3C validator |