ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2nd2 GIF version

Theorem df2nd2 5861
Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem df2nd2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 5805 . . . . 5 2nd :V–onto→V
2 fofn 5128 . . . . 5 (2nd :V–onto→V → 2nd Fn V)
3 dffn5im 5240 . . . . 5 (2nd Fn V → 2nd = (𝑤 ∈ V ↦ (2nd𝑤)))
41, 2, 3mp2b 8 . . . 4 2nd = (𝑤 ∈ V ↦ (2nd𝑤))
5 mptv 3874 . . . 4 (𝑤 ∈ V ↦ (2nd𝑤)) = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)}
64, 5eqtri 2101 . . 3 2nd = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)}
76reseq1i 4626 . 2 (2nd ↾ (V × V)) = ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)} ↾ (V × V))
8 resopab 4672 . 2 ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)} ↾ (V × V)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd𝑤))}
9 vex 2604 . . . . 5 𝑥 ∈ V
10 vex 2604 . . . . 5 𝑦 ∈ V
119, 10op2ndd 5796 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (2nd𝑤) = 𝑦)
1211eqeq2d 2092 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (2nd𝑤) ↔ 𝑧 = 𝑦))
1312dfoprab3 5837 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd𝑤))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}
147, 8, 133eqtrri 2106 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  wcel 1433  Vcvv 2601  cop 3401  {copab 3838  cmpt 3839   × cxp 4361  cres 4365   Fn wfn 4917  ontowfo 4920  cfv 4922  {coprab 5533  2nd c2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930  df-oprab 5536  df-1st 5787  df-2nd 5788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator