ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzdiffz0 GIF version

Theorem fz0fzdiffz0 9141
Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
Assertion
Ref Expression
fz0fzdiffz0 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem fz0fzdiffz0
StepHypRef Expression
1 fz0fzelfz0 9138 . . 3 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (0...𝑁))
2 elfzle1 9046 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
32adantl 271 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀𝐾)
43adantl 271 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑀𝐾)
5 elfznn0 9130 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
65adantr 270 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ0)
7 elfznn0 9130 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
8 nn0sub 8417 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
96, 7, 8syl2anr 284 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
104, 9mpbid 145 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ∈ ℕ0)
11 elfz3nn0 9131 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
1211adantr 270 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑁 ∈ ℕ0)
13 elfz2nn0 9128 . . . . . . 7 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
14 elfz2 9036 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
15 zsubcl 8392 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
1615zred 8469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
1716ancoms 264 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
18173adant2 957 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
19 zre 8355 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
20193ad2ant3 961 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
21 zre 8355 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
22213ad2ant2 960 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℝ)
2318, 20, 223jca 1118 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2423adantr 270 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2524adantr 270 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
26 nn0ge0 8313 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2726adantl 271 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
28 nn0re 8297 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
29 subge02 7582 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3020, 28, 29syl2an 283 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3127, 30mpbid 145 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (𝐾𝑀) ≤ 𝐾)
3231anim1i 333 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ≤ 𝐾𝐾𝑁))
33 letr 7194 . . . . . . . . . . . . . . . . 17 (((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝑀) ≤ 𝐾𝐾𝑁) → (𝐾𝑀) ≤ 𝑁))
3425, 32, 33sylc 61 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → (𝐾𝑀) ≤ 𝑁)
3534exp31 356 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁)))
3635a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁))))
3736com14 87 . . . . . . . . . . . . 13 (𝐾𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3837adantl 271 . . . . . . . . . . . 12 ((𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3938impcom 123 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4014, 39sylbi 119 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4140com13 79 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁)))
4241impcom 123 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
43423adant3 958 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4413, 43sylbi 119 . . . . . 6 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4544imp 122 . . . . 5 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ≤ 𝑁)
4645adantl 271 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ≤ 𝑁)
4710, 12, 463jca 1118 . . 3 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
481, 47mpancom 413 . 2 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
49 elfz2nn0 9128 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
5048, 49sylibr 132 1 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wcel 1433   class class class wbr 3785  (class class class)co 5532  cr 6980  0cc0 6981  cle 7154  cmin 7279  0cn0 8288  cz 8351  ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator