![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmtpos | GIF version |
Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dmtpos | ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4390 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
2 | ssel 2993 | . . . . 5 ⊢ (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V))) | |
3 | 1, 2 | mtoi 622 | . . . 4 ⊢ (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹) |
4 | df-rel 4370 | . . . 4 ⊢ (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V)) | |
5 | reldmtpos 5891 | . . . 4 ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | |
6 | 3, 4, 5 | 3imtr4i 199 | . . 3 ⊢ (Rel dom 𝐹 → Rel dom tpos 𝐹) |
7 | relcnv 4723 | . . 3 ⊢ Rel ◡dom 𝐹 | |
8 | 6, 7 | jctir 306 | . 2 ⊢ (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹)) |
9 | vex 2604 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
10 | vex 2604 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
11 | vex 2604 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
12 | brtposg 5892 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) | |
13 | 9, 10, 11, 12 | mp3an 1268 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧) |
14 | 13 | a1i 9 | . . . . 5 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
15 | 14 | exbidv 1746 | . . . 4 ⊢ (Rel dom 𝐹 → (∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧)) |
16 | 9, 10 | opex 3984 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V |
17 | 16 | eldm 4550 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ ∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧) |
18 | 9, 10 | opelcnv 4535 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ 〈𝑦, 𝑥〉 ∈ dom 𝐹) |
19 | 10, 9 | opex 3984 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V |
20 | 19 | eldm 4550 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
21 | 18, 20 | bitri 182 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
22 | 15, 17, 21 | 3bitr4g 221 | . . 3 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ ◡dom 𝐹)) |
23 | 22 | eqrelrdv2 4457 | . 2 ⊢ (((Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = ◡dom 𝐹) |
24 | 8, 23 | mpancom 413 | 1 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 ⊆ wss 2973 ∅c0 3251 〈cop 3401 class class class wbr 3785 × cxp 4361 ◡ccnv 4362 dom cdm 4363 Rel wrel 4368 tpos ctpos 5882 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 df-tpos 5883 |
This theorem is referenced by: rntpos 5895 dftpos2 5899 dftpos3 5900 tposfn2 5904 |
Copyright terms: Public domain | W3C validator |