| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2b | GIF version | ||
| Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
| Ref | Expression |
|---|---|
| peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 4336 | . 2 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
| 2 | elex 2610 | . . . . 5 ⊢ (suc 𝐴 ∈ ω → suc 𝐴 ∈ V) | |
| 3 | sucexb 4241 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 4 | 2, 3 | sylibr 132 | . . . 4 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ V) |
| 5 | sucidg 4171 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) |
| 7 | elnn 4346 | . . 3 ⊢ ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ ω) | |
| 8 | 6, 7 | mpancom 413 | . 2 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ ω) |
| 9 | 1, 8 | impbii 124 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ∈ wcel 1433 Vcvv 2601 suc csuc 4120 ωcom 4331 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-suc 4126 df-iom 4332 |
| This theorem is referenced by: nnmsucr 6090 |
| Copyright terms: Public domain | W3C validator |