ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2b GIF version

Theorem peano2b 4355
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
Assertion
Ref Expression
peano2b (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)

Proof of Theorem peano2b
StepHypRef Expression
1 peano2 4336 . 2 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 elex 2610 . . . . 5 (suc 𝐴 ∈ ω → suc 𝐴 ∈ V)
3 sucexb 4241 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
42, 3sylibr 132 . . . 4 (suc 𝐴 ∈ ω → 𝐴 ∈ V)
5 sucidg 4171 . . . 4 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
64, 5syl 14 . . 3 (suc 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
7 elnn 4346 . . 3 ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ ω)
86, 7mpancom 413 . 2 (suc 𝐴 ∈ ω → 𝐴 ∈ ω)
91, 8impbii 124 1 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wb 103  wcel 1433  Vcvv 2601  suc csuc 4120  ωcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332
This theorem is referenced by:  nnmsucr  6090
  Copyright terms: Public domain W3C validator