ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqeqceilz GIF version

Theorem flqeqceilz 9320
Description: A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
flqeqceilz (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))

Proof of Theorem flqeqceilz
StepHypRef Expression
1 flid 9286 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2 ceilid 9317 . . 3 (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
31, 2eqtr4d 2116 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) = (⌈‘𝐴))
4 flqcl 9277 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
5 zq 8711 . . . . . 6 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
64, 5syl 14 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℚ)
7 qdceq 9256 . . . . 5 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → DECID (⌊‘𝐴) = 𝐴)
86, 7mpancom 413 . . . 4 (𝐴 ∈ ℚ → DECID (⌊‘𝐴) = 𝐴)
9 exmiddc 777 . . . 4 (DECID (⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
108, 9syl 14 . . 3 (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴))
11 eqeq1 2087 . . . . . . 7 ((⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
1211adantr 270 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
13 ceilqidz 9318 . . . . . . . . 9 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
14 eqcom 2083 . . . . . . . . 9 ((⌈‘𝐴) = 𝐴𝐴 = (⌈‘𝐴))
1513, 14syl6bb 194 . . . . . . . 8 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴)))
1615biimprd 156 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1716adantl 271 . . . . . 6 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1812, 17sylbid 148 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℚ) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1918ex 113 . . . 4 ((⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
20 flqle 9280 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
21 df-ne 2246 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 ↔ ¬ (⌊‘𝐴) = 𝐴)
22 necom 2329 . . . . . . 7 ((⌊‘𝐴) ≠ 𝐴𝐴 ≠ (⌊‘𝐴))
23 qltlen 8725 . . . . . . . . . . 11 (((⌊‘𝐴) ∈ ℚ ∧ 𝐴 ∈ ℚ) → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
246, 23mpancom 413 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
25 breq1 3788 . . . . . . . . . . . . . 14 ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
2625adantl 271 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
27 ceilqge 9312 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴))
28 qre 8710 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
29 ceilqcl 9310 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℤ)
3029zred 8469 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℝ)
3128, 30lenltd 7227 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬ (⌈‘𝐴) < 𝐴))
32 pm2.21 579 . . . . . . . . . . . . . . . 16 (¬ (⌈‘𝐴) < 𝐴 → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3331, 32syl6bi 161 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℚ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3427, 33mpd 13 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3534adantr 270 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
3626, 35sylbid 148 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ))
3736ex 113 . . . . . . . . . . 11 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3837com23 77 . . . . . . . . . 10 (𝐴 ∈ ℚ → ((⌊‘𝐴) < 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3924, 38sylbird 168 . . . . . . . . 9 (𝐴 ∈ ℚ → (((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4039expd 254 . . . . . . . 8 (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4140com3r 78 . . . . . . 7 (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4222, 41sylbi 119 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4321, 42sylbir 133 . . . . 5 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
4420, 43mpdi 42 . . . 4 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4519, 44jaoi 668 . . 3 (((⌊‘𝐴) = 𝐴 ∨ ¬ (⌊‘𝐴) = 𝐴) → (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
4610, 45mpcom 36 . 2 (𝐴 ∈ ℚ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
473, 46impbid2 141 1 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  DECID wdc 775   = wceq 1284  wcel 1433  wne 2245   class class class wbr 3785  cfv 4922   < clt 7153  cle 7154  cz 8351  cq 8704  cfl 9272  cceil 9273
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274  df-ceil 9275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator