![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpsyl | GIF version |
Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
mpsyl.1 | ⊢ 𝜑 |
mpsyl.2 | ⊢ (𝜓 → 𝜒) |
mpsyl.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpsyl | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpsyl.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
3 | mpsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
4 | mpsyl.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
5 | 2, 3, 4 | sylc 61 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: relcnvtr 4860 relresfld 4867 relcoi1 4869 funco 4960 foimacnv 5164 fvi 5251 isoini2 5478 ovidig 5638 smores2 5932 tfrlem5 5953 snnen2og 6345 phpm 6351 cauappcvgprlemm 6835 caucvgprlemm 6858 caucvgprprlemml 6884 caucvgsr 6978 alzdvds 10254 zsupcl 10343 infssuzex 10345 gcddvds 10355 dvdslegcd 10356 |
Copyright terms: Public domain | W3C validator |