![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alzdvds | GIF version |
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
alzdvds | ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssz 8368 | . . . . . . . 8 ⊢ ℕ ⊆ ℤ | |
2 | zcn 8356 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
3 | 2 | abscld 10067 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ) |
4 | arch 8285 | . . . . . . . . 9 ⊢ ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) | |
5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥) |
6 | ssrexv 3059 | . . . . . . . 8 ⊢ (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)) | |
7 | 1, 5, 6 | mpsyl 64 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥) |
8 | zabscl 9972 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
9 | zltnle 8397 | . . . . . . . . . 10 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) | |
10 | 8, 9 | sylan 277 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁))) |
11 | 10 | rexbidva 2365 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁))) |
12 | rexnalim 2359 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) | |
13 | 11, 12 | syl6bi 161 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
14 | 7, 13 | mpd 13 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
15 | 14 | adantl 271 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)) |
16 | ralim 2422 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) | |
17 | dvdsleabs 10245 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) | |
18 | 17 | 3expb 1139 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
19 | 18 | expcom 114 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁)))) |
20 | 19 | ralrimiv 2433 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥 ∥ 𝑁 → 𝑥 ≤ (abs‘𝑁))) |
21 | 16, 20 | syl11 31 | . . . . . 6 ⊢ (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
22 | 21 | expdimp 255 | . . . . 5 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))) |
23 | 15, 22 | mtod 621 | . . . 4 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0) |
24 | 0z 8362 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
25 | zdceq 8423 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
26 | 24, 25 | mpan2 415 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → DECID 𝑁 = 0) |
27 | nnedc 2250 | . . . . . 6 ⊢ (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) | |
28 | 26, 27 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
29 | 28 | adantl 271 | . . . 4 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
30 | 23, 29 | mpbid 145 | . . 3 ⊢ ((∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ∧ 𝑁 ∈ ℤ) → 𝑁 = 0) |
31 | 30 | expcom 114 | . 2 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 → 𝑁 = 0)) |
32 | dvds0 10210 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 0) | |
33 | breq2 3789 | . . . 4 ⊢ (𝑁 = 0 → (𝑥 ∥ 𝑁 ↔ 𝑥 ∥ 0)) | |
34 | 32, 33 | syl5ibr 154 | . . 3 ⊢ (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥 ∥ 𝑁)) |
35 | 34 | ralrimiv 2433 | . 2 ⊢ (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁) |
36 | 31, 35 | impbid1 140 | 1 ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 DECID wdc 775 = wceq 1284 ∈ wcel 1433 ≠ wne 2245 ∀wral 2348 ∃wrex 2349 ⊆ wss 2973 class class class wbr 3785 ‘cfv 4922 ℝcr 6980 0cc0 6981 < clt 7153 ≤ cle 7154 ℕcn 8039 ℤcz 8351 abscabs 9883 ∥ cdvds 10195 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-rp 8735 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-dvds 10196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |