![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovidig | GIF version |
Description: The value of an operation class abstraction. Compare ovidi 5639. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ovidig.1 | ⊢ ∃*𝑧𝜑 |
ovidig.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Ref | Expression |
---|---|
ovidig | ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5535 | . 2 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
2 | ovidig.1 | . . . . 5 ⊢ ∃*𝑧𝜑 | |
3 | 2 | funoprab 5621 | . . . 4 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
4 | ovidig.2 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
5 | 4 | funeqi 4942 | . . . 4 ⊢ (Fun 𝐹 ↔ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
6 | 3, 5 | mpbir 144 | . . 3 ⊢ Fun 𝐹 |
7 | oprabid 5557 | . . . . 5 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) | |
8 | 7 | biimpri 131 | . . . 4 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
9 | 8, 4 | syl6eleqr 2172 | . . 3 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹) |
10 | funopfv 5234 | . . 3 ⊢ (Fun 𝐹 → (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧)) | |
11 | 6, 9, 10 | mpsyl 64 | . 2 ⊢ (𝜑 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧) |
12 | 1, 11 | syl5eq 2125 | 1 ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 ∃*wmo 1942 〈cop 3401 Fun wfun 4916 ‘cfv 4922 (class class class)co 5532 {coprab 5533 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-ov 5535 df-oprab 5536 |
This theorem is referenced by: ovidi 5639 |
Copyright terms: Public domain | W3C validator |