ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemm GIF version

Theorem caucvgprlemm 6858
Description: Lemma for caucvgpr 6872. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗,𝑠   𝑗,𝐹,𝑙   𝐹,𝑟   𝑢,𝐹,𝑗   𝐿,𝑟   𝜑,𝑗,𝑠   𝑠,𝑙
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠)   𝐿(𝑢,𝑗,𝑘,𝑛,𝑠,𝑙)

Proof of Theorem caucvgprlemm
StepHypRef Expression
1 1pi 6505 . . . . 5 1𝑜N
2 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
3 fveq2 5198 . . . . . . 7 (𝑗 = 1𝑜 → (𝐹𝑗) = (𝐹‘1𝑜))
43breq2d 3797 . . . . . 6 (𝑗 = 1𝑜 → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹‘1𝑜)))
54rspcv 2697 . . . . 5 (1𝑜N → (∀𝑗N 𝐴 <Q (𝐹𝑗) → 𝐴 <Q (𝐹‘1𝑜)))
61, 2, 5mpsyl 64 . . . 4 (𝜑𝐴 <Q (𝐹‘1𝑜))
7 ltrelnq 6555 . . . . . 6 <Q ⊆ (Q × Q)
87brel 4410 . . . . 5 (𝐴 <Q (𝐹‘1𝑜) → (𝐴Q ∧ (𝐹‘1𝑜) ∈ Q))
98simpld 110 . . . 4 (𝐴 <Q (𝐹‘1𝑜) → 𝐴Q)
10 halfnqq 6600 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
116, 9, 103syl 17 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
12 simplr 496 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
13 archrecnq 6853 . . . . . . . 8 (𝑠Q → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠)
1412, 13syl 14 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠)
15 simpr 108 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠)
16 simplr 496 . . . . . . . . . . . . . 14 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝑗N)
17 nnnq 6612 . . . . . . . . . . . . . 14 (𝑗N → [⟨𝑗, 1𝑜⟩] ~QQ)
18 recclnq 6582 . . . . . . . . . . . . . 14 ([⟨𝑗, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q)
2012ad2antrr 471 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝑠Q)
21 ltanqg 6590 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q𝑠Q𝑠Q) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2219, 20, 20, 21syl3anc 1169 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2315, 22mpbid 145 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠))
24 simpllr 500 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) = 𝐴)
2523, 24breqtrd 3809 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝐴)
26 rsp 2411 . . . . . . . . . . . . 13 (∀𝑗N 𝐴 <Q (𝐹𝑗) → (𝑗N𝐴 <Q (𝐹𝑗)))
272, 26syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑗N𝐴 <Q (𝐹𝑗)))
2827ad4antr 477 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑗N𝐴 <Q (𝐹𝑗)))
2916, 28mpd 13 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝐴 <Q (𝐹𝑗))
30 ltsonq 6588 . . . . . . . . . . 11 <Q Or Q
3130, 7sotri 4740 . . . . . . . . . 10 (((𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝐴𝐴 <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
3225, 29, 31syl2anc 403 . . . . . . . . 9 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
3332ex 113 . . . . . . . 8 ((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠 → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
3433reximdva 2463 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠 → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
3514, 34mpd 13 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
36 oveq1 5539 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
3736breq1d 3795 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
3837rexbidv 2369 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
39 caucvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
4039fveq2i 5201 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)
41 nqex 6553 . . . . . . . . . 10 Q ∈ V
4241rabex 3922 . . . . . . . . 9 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
4341rabex 3922 . . . . . . . . 9 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ∈ V
4442, 43op1st 5793 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
4540, 44eqtri 2101 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
4638, 45elrab2 2751 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
4712, 35, 46sylanbrc 408 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4847ex 113 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4948reximdva 2463 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
5011, 49mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
51 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
521a1i 9 . . . . . 6 (𝜑 → 1𝑜N)
5351, 52ffvelrnd 5324 . . . . 5 (𝜑 → (𝐹‘1𝑜) ∈ Q)
54 1nq 6556 . . . . 5 1QQ
55 addclnq 6565 . . . . 5 (((𝐹‘1𝑜) ∈ Q ∧ 1QQ) → ((𝐹‘1𝑜) +Q 1Q) ∈ Q)
5653, 54, 55sylancl 404 . . . 4 (𝜑 → ((𝐹‘1𝑜) +Q 1Q) ∈ Q)
57 addclnq 6565 . . . 4 ((((𝐹‘1𝑜) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ Q)
5856, 54, 57sylancl 404 . . 3 (𝜑 → (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ Q)
59 df-1nqqs 6541 . . . . . . . . 9 1Q = [⟨1𝑜, 1𝑜⟩] ~Q
6059fveq2i 5201 . . . . . . . 8 (*Q‘1Q) = (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )
61 rec1nq 6585 . . . . . . . 8 (*Q‘1Q) = 1Q
6260, 61eqtr3i 2103 . . . . . . 7 (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) = 1Q
6362oveq2i 5543 . . . . . 6 ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )) = ((𝐹‘1𝑜) +Q 1Q)
64 ltaddnq 6597 . . . . . . 7 ((((𝐹‘1𝑜) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1𝑜) +Q 1Q) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
6556, 54, 64sylancl 404 . . . . . 6 (𝜑 → ((𝐹‘1𝑜) +Q 1Q) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
6663, 65syl5eqbr 3818 . . . . 5 (𝜑 → ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
67 opeq1 3570 . . . . . . . . . 10 (𝑗 = 1𝑜 → ⟨𝑗, 1𝑜⟩ = ⟨1𝑜, 1𝑜⟩)
6867eceq1d 6165 . . . . . . . . 9 (𝑗 = 1𝑜 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨1𝑜, 1𝑜⟩] ~Q )
6968fveq2d 5202 . . . . . . . 8 (𝑗 = 1𝑜 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ))
703, 69oveq12d 5550 . . . . . . 7 (𝑗 = 1𝑜 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )))
7170breq1d 3795 . . . . . 6 (𝑗 = 1𝑜 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)))
7271rspcev 2701 . . . . 5 ((1𝑜N ∧ ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
7352, 66, 72syl2anc 403 . . . 4 (𝜑 → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
74 breq2 3789 . . . . . 6 (𝑢 = (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)))
7574rexbidv 2369 . . . . 5 (𝑢 = (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)))
7639fveq2i 5201 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)
7742, 43op2nd 5794 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}
7876, 77eqtri 2101 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}
7975, 78elrab2 2751 . . . 4 ((((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)))
8058, 73, 79sylanbrc 408 . . 3 (𝜑 → (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
81 eleq1 2141 . . . 4 (𝑟 = (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
8281rspcev 2701 . . 3 (((((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8358, 80, 82syl2anc 403 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8450, 83jca 300 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  wrex 2349  {crab 2352  cop 3401   class class class wbr 3785  wf 4918  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  1𝑜c1o 6017  [cec 6127  Ncnpi 6462   <N clti 6465   ~Q ceq 6469  Qcnq 6470  1Qc1q 6471   +Q cplq 6472  *Qcrq 6474   <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543
This theorem is referenced by:  caucvgprlemcl  6866
  Copyright terms: Public domain W3C validator