![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpt2mpts | GIF version |
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.) |
Ref | Expression |
---|---|
mpt2mpts | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2mptsx 5843 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) | |
2 | iunxpconst 4418 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) | |
3 | mpteq1 3862 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) → (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶)) | |
4 | 2, 3 | ax-mp 7 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) |
5 | 1, 4 | eqtri 2101 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ⦋csb 2908 {csn 3398 ∪ ciun 3678 ↦ cmpt 3839 × cxp 4361 ‘cfv 4922 ↦ cmpt2 5534 1st c1st 5785 2nd c2nd 5786 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fv 4930 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 |
This theorem is referenced by: dfmpt2 5864 |
Copyright terms: Public domain | W3C validator |