| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mss | GIF version | ||
| Description: An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.) |
| Ref | Expression |
|---|---|
| mss | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2604 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | 1 | snss 3516 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
| 3 | 1 | snm 3510 | . . . . 5 ⊢ ∃𝑤 𝑤 ∈ {𝑦} |
| 4 | 1 | snex 3957 | . . . . . 6 ⊢ {𝑦} ∈ V |
| 5 | sseq1 3020 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ⊆ 𝐴 ↔ {𝑦} ⊆ 𝐴)) | |
| 6 | eleq2 2142 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ {𝑦})) | |
| 7 | 6 | exbidv 1746 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (∃𝑤 𝑤 ∈ 𝑥 ↔ ∃𝑤 𝑤 ∈ {𝑦})) |
| 8 | 5, 7 | anbi12d 456 | . . . . . 6 ⊢ (𝑥 = {𝑦} → ((𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥) ↔ ({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦}))) |
| 9 | 4, 8 | spcev 2692 | . . . . 5 ⊢ (({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦}) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
| 10 | 3, 9 | mpan2 415 | . . . 4 ⊢ ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
| 11 | 2, 10 | sylbi 119 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
| 12 | 11 | exlimiv 1529 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
| 13 | elequ1 1640 | . . . . 5 ⊢ (𝑧 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑤 ∈ 𝑥)) | |
| 14 | 13 | cbvexv 1836 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝑥 ↔ ∃𝑤 𝑤 ∈ 𝑥) |
| 15 | 14 | anbi2i 444 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥) ↔ (𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
| 16 | 15 | exbii 1536 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
| 17 | 12, 16 | sylibr 132 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ⊆ wss 2973 {csn 3398 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |