ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2 GIF version

Theorem isprm2 10499
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1nprm 10496 . . . . 5 ¬ 1 ∈ ℙ
2 eleq1 2141 . . . . . 6 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
32biimpcd 157 . . . . 5 (𝑃 ∈ ℙ → (𝑃 = 1 → 1 ∈ ℙ))
41, 3mtoi 622 . . . 4 (𝑃 ∈ ℙ → ¬ 𝑃 = 1)
54neqned 2252 . . 3 (𝑃 ∈ ℙ → 𝑃 ≠ 1)
65pm4.71i 383 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 1))
7 isprm 10491 . . . 4 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜))
8 isprm2lem 10498 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
9 eqss 3014 . . . . . . . . . . 11 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃}))
109imbi2i 224 . . . . . . . . . 10 ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})))
11 1idssfct 10497 . . . . . . . . . . 11 (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
12 jcab 567 . . . . . . . . . . 11 ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})) ↔ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})))
1311, 12mpbiran2 882 . . . . . . . . . 10 ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1410, 13bitri 182 . . . . . . . . 9 ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1514pm5.74ri 179 . . . . . . . 8 (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1615adantr 270 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
178, 16bitrd 186 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1817expcom 114 . . . . 5 (𝑃 ≠ 1 → (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
1918pm5.32d 437 . . . 4 (𝑃 ≠ 1 → ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
207, 19syl5bb 190 . . 3 (𝑃 ≠ 1 → (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
2120pm5.32ri 442 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 1) ↔ ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1))
22 ancom 262 . . . 4 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
23 anass 393 . . . 4 (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
2422, 23bitr4i 185 . . 3 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
25 ancom 262 . . . . 5 ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1))
26 eluz2b3 8691 . . . . 5 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1))
2725, 26bitr4i 185 . . . 4 ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ 𝑃 ∈ (ℤ‘2))
2827anbi1i 445 . . 3 (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
29 dfss2 2988 . . . . 5 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}))
30 breq1 3788 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑛𝑃𝑧𝑃))
3130elrab 2749 . . . . . . . . 9 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ (𝑧 ∈ ℕ ∧ 𝑧𝑃))
32 vex 2604 . . . . . . . . . 10 𝑧 ∈ V
3332elpr 3419 . . . . . . . . 9 (𝑧 ∈ {1, 𝑃} ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃))
3431, 33imbi12i 237 . . . . . . . 8 ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ((𝑧 ∈ ℕ ∧ 𝑧𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
35 impexp 259 . . . . . . . 8 (((𝑧 ∈ ℕ ∧ 𝑧𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3634, 35bitri 182 . . . . . . 7 ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3736albii 1399 . . . . . 6 (∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
38 df-ral 2353 . . . . . 6 (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3937, 38bitr4i 185 . . . . 5 (∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
4029, 39bitri 182 . . . 4 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
4140anbi2i 444 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
4224, 28, 413bitri 204 . 2 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
436, 21, 423bitri 204 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661  wal 1282   = wceq 1284  wcel 1433  wne 2245  wral 2348  {crab 2352  wss 2973  {cpr 3399   class class class wbr 3785  cfv 4922  2𝑜c2o 6018  cen 6242  1c1 6982  cn 8039  2c2 8089  cuz 8619  cdvds 10195  cprime 10489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-prm 10490
This theorem is referenced by:  isprm3  10500  isprm4  10501  dvdsprime  10504  coprm  10523  isprm6  10526
  Copyright terms: Public domain W3C validator