Proof of Theorem lcmcllem
| Step | Hyp | Ref
| Expression |
| 1 | | lcmn0val 10448 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
| 2 | | 1zzd 8378 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 1 ∈
ℤ) |
| 3 | | nnuz 8654 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
| 4 | | rabeq 2595 |
. . . 4
⊢ (ℕ
= (ℤ≥‘1) → {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} = {𝑛 ∈ (ℤ≥‘1)
∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
| 5 | 3, 4 | ax-mp 7 |
. . 3
⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} = {𝑛 ∈ (ℤ≥‘1)
∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} |
| 6 | | simpll 495 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∈ ℤ) |
| 7 | | simplr 496 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℤ) |
| 8 | 6, 7 | zmulcld 8475 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ∈ ℤ) |
| 9 | 6 | zcnd 8470 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∈ ℂ) |
| 10 | 7 | zcnd 8470 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℂ) |
| 11 | | ioran 701 |
. . . . . . . . . . . 12
⊢ (¬
(𝑀 = 0 ∨ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0)) |
| 12 | 11 | biimpi 118 |
. . . . . . . . . . 11
⊢ (¬
(𝑀 = 0 ∨ 𝑁 = 0) → (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0)) |
| 13 | 12 | adantl 271 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0)) |
| 14 | 13 | simpld 110 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ¬ 𝑀 = 0) |
| 15 | 14 | neqned 2252 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ≠ 0) |
| 16 | | 0zd 8363 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 0 ∈
ℤ) |
| 17 | | zapne 8422 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑀 # 0
↔ 𝑀 ≠
0)) |
| 18 | 6, 16, 17 | syl2anc 403 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 # 0 ↔ 𝑀 ≠ 0)) |
| 19 | 15, 18 | mpbird 165 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 # 0) |
| 20 | 13 | simprd 112 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ¬ 𝑁 = 0) |
| 21 | 20 | neqned 2252 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ≠ 0) |
| 22 | | zapne 8422 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 # 0
↔ 𝑁 ≠
0)) |
| 23 | 7, 16, 22 | syl2anc 403 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑁 # 0 ↔ 𝑁 ≠ 0)) |
| 24 | 21, 23 | mpbird 165 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 # 0) |
| 25 | 9, 10, 19, 24 | mulap0d 7748 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) # 0) |
| 26 | | zapne 8422 |
. . . . . . 7
⊢ (((𝑀 · 𝑁) ∈ ℤ ∧ 0 ∈ ℤ)
→ ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0)) |
| 27 | 8, 16, 26 | syl2anc 403 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0)) |
| 28 | 25, 27 | mpbid 145 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ≠ 0) |
| 29 | | nnabscl 9986 |
. . . . 5
⊢ (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ) |
| 30 | 8, 28, 29 | syl2anc 403 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ) |
| 31 | | dvdsmul1 10217 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
| 32 | | zmulcl 8404 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
| 33 | | dvdsabsb 10214 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁)))) |
| 34 | 32, 33 | syldan 276 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁)))) |
| 35 | 31, 34 | mpbid 145 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘(𝑀 · 𝑁))) |
| 36 | | dvdsmul2 10218 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) |
| 37 | | dvdsabsb 10214 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
| 38 | 32, 37 | sylan2 280 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
| 39 | 38 | anabss7 547 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
| 40 | 36, 39 | mpbid 145 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (abs‘(𝑀 · 𝑁))) |
| 41 | 35, 40 | jca 300 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
| 42 | 41 | adantr 270 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
| 43 | | breq2 3789 |
. . . . . 6
⊢ (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁)))) |
| 44 | | breq2 3789 |
. . . . . 6
⊢ (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
| 45 | 43, 44 | anbi12d 456 |
. . . . 5
⊢ (𝑛 = (abs‘(𝑀 · 𝑁)) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))) |
| 46 | 45 | elrab 2749 |
. . . 4
⊢
((abs‘(𝑀
· 𝑁)) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ ((abs‘(𝑀 · 𝑁)) ∈ ℕ ∧ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))) |
| 47 | 30, 42, 46 | sylanbrc 408 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
| 48 | | simplll 499 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → 𝑀 ∈ ℤ) |
| 49 | | elfzelz 9045 |
. . . . . 6
⊢ (𝑛 ∈ (1...(abs‘(𝑀 · 𝑁))) → 𝑛 ∈ ℤ) |
| 50 | 49 | adantl 271 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → 𝑛 ∈ ℤ) |
| 51 | | zdvdsdc 10216 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) →
DECID 𝑀
∥ 𝑛) |
| 52 | 48, 50, 51 | syl2anc 403 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID 𝑀 ∥ 𝑛) |
| 53 | | simpllr 500 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → 𝑁 ∈ ℤ) |
| 54 | | zdvdsdc 10216 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) →
DECID 𝑁
∥ 𝑛) |
| 55 | 53, 50, 54 | syl2anc 403 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID 𝑁 ∥ 𝑛) |
| 56 | | dcan 875 |
. . . 4
⊢
(DECID 𝑀 ∥ 𝑛 → (DECID 𝑁 ∥ 𝑛 → DECID (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) |
| 57 | 52, 55, 56 | sylc 61 |
. . 3
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
| 58 | 2, 5, 47, 57 | infssuzcldc 10347 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
| 59 | 1, 58 | eqeltrd 2155 |
1
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |