![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffn | GIF version |
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffn.1 | ⊢ Ⅎ𝑥𝐹 |
nffn.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffn | ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 4925 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | nffn.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nffun 4944 | . . 3 ⊢ Ⅎ𝑥Fun 𝐹 |
4 | 2 | nfdm 4596 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
5 | nffn.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfeq 2226 | . . 3 ⊢ Ⅎ𝑥dom 𝐹 = 𝐴 |
7 | 3, 6 | nfan 1497 | . 2 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴) |
8 | 1, 7 | nfxfr 1403 | 1 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1284 Ⅎwnf 1389 Ⅎwnfc 2206 dom cdm 4363 Fun wfun 4916 Fn wfn 4917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-fun 4924 df-fn 4925 |
This theorem is referenced by: nff 5063 nffo 5125 |
Copyright terms: Public domain | W3C validator |