![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfnegd | GIF version |
Description: Deduction version of nfneg 7305. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfnegd | ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 7282 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | nfcvd 2220 | . . 3 ⊢ (𝜑 → Ⅎ𝑥0) | |
3 | nfcvd 2220 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 − ) | |
4 | nfnegd.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 2, 3, 4 | nfovd 5554 | . 2 ⊢ (𝜑 → Ⅎ𝑥(0 − 𝐴)) |
6 | 1, 5 | nfcxfrd 2217 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnfc 2206 (class class class)co 5532 0cc0 6981 − cmin 7279 -cneg 7280 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 df-neg 7282 |
This theorem is referenced by: nfneg 7305 |
Copyright terms: Public domain | W3C validator |