![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfovd | GIF version |
Description: Deduction version of bound-variable hypothesis builder nfov 5555. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfovd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfovd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
nfovd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfovd | ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5535 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | nfovd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
3 | nfovd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | nfovd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
5 | 3, 4 | nfopd 3587 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
6 | 2, 5 | nffvd 5207 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘〈𝐴, 𝐵〉)) |
7 | 1, 6 | nfcxfrd 2217 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnfc 2206 〈cop 3401 ‘cfv 4922 (class class class)co 5532 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
This theorem is referenced by: nfov 5555 nfnegd 7304 |
Copyright terms: Public domain | W3C validator |