ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfriota GIF version

Theorem nfriota 5497
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
nfriota.1 𝑥𝜑
nfriota.2 𝑥𝐴
Assertion
Ref Expression
nfriota 𝑥(𝑦𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriota
StepHypRef Expression
1 nftru 1395 . . 3 𝑦
2 nfriota.1 . . . 4 𝑥𝜑
32a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
4 nfriota.2 . . . 4 𝑥𝐴
54a1i 9 . . 3 (⊤ → 𝑥𝐴)
61, 3, 5nfriotadxy 5496 . 2 (⊤ → 𝑥(𝑦𝐴 𝜑))
76trud 1293 1 𝑥(𝑦𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wtru 1285  wnf 1389  wnfc 2206  crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-sn 3404  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by:  csbriotag  5500  lble  8025
  Copyright terms: Public domain W3C validator