ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  niex GIF version

Theorem niex 6502
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
niex N ∈ V

Proof of Theorem niex
StepHypRef Expression
1 omex 4334 . 2 ω ∈ V
2 df-ni 6494 . . 3 N = (ω ∖ {∅})
3 difss 3098 . . 3 (ω ∖ {∅}) ⊆ ω
42, 3eqsstri 3029 . 2 N ⊆ ω
51, 4ssexi 3916 1 N ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1433  Vcvv 2601  cdif 2970  c0 3251  {csn 3398  ωcom 4331  Ncnpi 6462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-int 3637  df-iom 4332  df-ni 6494
This theorem is referenced by:  enqex  6550  nqex  6553  enq0ex  6629  nq0ex  6630
  Copyright terms: Public domain W3C validator