| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0ex | GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0ex | ⊢ ~Q0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4334 | . . . 4 ⊢ ω ∈ V | |
| 2 | niex 6502 | . . . 4 ⊢ N ∈ V | |
| 3 | 1, 2 | xpex 4471 | . . 3 ⊢ (ω × N) ∈ V |
| 4 | 3, 3 | xpex 4471 | . 2 ⊢ ((ω × N) × (ω × N)) ∈ V |
| 5 | df-enq0 6614 | . . 3 ⊢ ~Q0 = {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·𝑜 𝑤) = (𝑦 ·𝑜 𝑧)))} | |
| 6 | opabssxp 4432 | . . 3 ⊢ {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·𝑜 𝑤) = (𝑦 ·𝑜 𝑧)))} ⊆ ((ω × N) × (ω × N)) | |
| 7 | 5, 6 | eqsstri 3029 | . 2 ⊢ ~Q0 ⊆ ((ω × N) × (ω × N)) |
| 8 | 4, 7 | ssexi 3916 | 1 ⊢ ~Q0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 〈cop 3401 {copab 3838 ωcom 4331 × cxp 4361 (class class class)co 5532 ·𝑜 comu 6022 Ncnpi 6462 ~Q0 ceq0 6476 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-opab 3840 df-iom 4332 df-xp 4369 df-ni 6494 df-enq0 6614 |
| This theorem is referenced by: nqnq0 6631 addnnnq0 6639 mulnnnq0 6640 addclnq0 6641 mulclnq0 6642 prarloclemcalc 6692 |
| Copyright terms: Public domain | W3C validator |