ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ex GIF version

Theorem enq0ex 6629
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
enq0ex ~Q0 ∈ V

Proof of Theorem enq0ex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4334 . . . 4 ω ∈ V
2 niex 6502 . . . 4 N ∈ V
31, 2xpex 4471 . . 3 (ω × N) ∈ V
43, 3xpex 4471 . 2 ((ω × N) × (ω × N)) ∈ V
5 df-enq0 6614 . . 3 ~Q0 = {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·𝑜 𝑤) = (𝑦 ·𝑜 𝑧)))}
6 opabssxp 4432 . . 3 {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·𝑜 𝑤) = (𝑦 ·𝑜 𝑧)))} ⊆ ((ω × N) × (ω × N))
75, 6eqsstri 3029 . 2 ~Q0 ⊆ ((ω × N) × (ω × N))
84, 7ssexi 3916 1 ~Q0 ∈ V
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  cop 3401  {copab 3838  ωcom 4331   × cxp 4361  (class class class)co 5532   ·𝑜 comu 6022  Ncnpi 6462   ~Q0 ceq0 6476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-opab 3840  df-iom 4332  df-xp 4369  df-ni 6494  df-enq0 6614
This theorem is referenced by:  nqnq0  6631  addnnnq0  6639  mulnnnq0  6640  addclnq0  6641  mulclnq0  6642  prarloclemcalc  6692
  Copyright terms: Public domain W3C validator