| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucmin | GIF version | ||
| Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.) |
| Ref | Expression |
|---|---|
| onsucmin | ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4130 | . . . . 5 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 2 | ordelsuc 4249 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) | |
| 3 | 1, 2 | sylan2 280 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) |
| 4 | 3 | rabbidva 2592 | . . 3 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥} = {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
| 5 | 4 | inteqd 3641 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥} = ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
| 6 | sucelon 4247 | . . 3 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | |
| 7 | intmin 3656 | . . 3 ⊢ (suc 𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) | |
| 8 | 6, 7 | sylbi 119 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) |
| 9 | 5, 8 | eqtr2d 2114 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 {crab 2352 ⊆ wss 2973 ∩ cint 3636 Ord word 4117 Oncon0 4118 suc csuc 4120 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |