| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1stb | GIF version | ||
| Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| op1stb.1 | ⊢ 𝐴 ∈ V |
| op1stb.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1stb | ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1stb.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | op1stb.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | dfop 3569 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 4 | 3 | inteqi 3640 | . . . 4 ⊢ ∩ 〈𝐴, 𝐵〉 = ∩ {{𝐴}, {𝐴, 𝐵}} |
| 5 | 1 | snex 3957 | . . . . . 6 ⊢ {𝐴} ∈ V |
| 6 | prexg 3966 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 7 | 1, 2, 6 | mp2an 416 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ V |
| 8 | 5, 7 | intpr 3668 | . . . . 5 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}) |
| 9 | snsspr1 3533 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 10 | df-ss 2986 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
| 11 | 9, 10 | mpbi 143 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
| 12 | 8, 11 | eqtri 2101 | . . . 4 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴} |
| 13 | 4, 12 | eqtri 2101 | . . 3 ⊢ ∩ 〈𝐴, 𝐵〉 = {𝐴} |
| 14 | 13 | inteqi 3640 | . 2 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = ∩ {𝐴} |
| 15 | 1 | intsn 3671 | . 2 ⊢ ∩ {𝐴} = 𝐴 |
| 16 | 14, 15 | eqtri 2101 | 1 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∩ cin 2972 ⊆ wss 2973 {csn 3398 {cpr 3399 〈cop 3401 ∩ cint 3636 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-int 3637 |
| This theorem is referenced by: elreldm 4578 op2ndb 4824 1stval2 5802 fundmen 6309 xpsnen 6318 |
| Copyright terms: Public domain | W3C validator |