![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeqpr | GIF version |
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
opeqpr.1 | ⊢ 𝐴 ∈ V |
opeqpr.2 | ⊢ 𝐵 ∈ V |
opeqpr.3 | ⊢ 𝐶 ∈ V |
opeqpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opeqpr | ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2083 | . 2 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = 〈𝐴, 𝐵〉) | |
2 | opeqpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | opeqpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | dfop 3569 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
5 | 4 | eqeq2i 2091 | . 2 ⊢ ({𝐶, 𝐷} = 〈𝐴, 𝐵〉 ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}}) |
6 | opeqpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
7 | opeqpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
8 | 2 | snex 3957 | . . 3 ⊢ {𝐴} ∈ V |
9 | prexg 3966 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
10 | 2, 3, 9 | mp2an 416 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
11 | 6, 7, 8, 10 | preq12b 3562 | . 2 ⊢ ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
12 | 1, 5, 11 | 3bitri 204 | 1 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∨ wo 661 = wceq 1284 ∈ wcel 1433 Vcvv 2601 {csn 3398 {cpr 3399 〈cop 3401 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 |
This theorem is referenced by: relop 4504 |
Copyright terms: Public domain | W3C validator |