![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq2i | GIF version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqeq2i | ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqeq2 2090 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐶 = 𝐴 ↔ 𝐶 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 = wceq 1284 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 |
This theorem is referenced by: eqtri 2101 rabid2 2530 dfss2 2988 equncom 3117 preq12b 3562 preqsn 3567 opeqpr 4008 orddif 4290 dfrel4v 4792 dfiota2 4888 funopg 4954 fnressn 5370 fressnfv 5371 acexmidlemph 5525 fnovim 5629 tpossym 5914 tfr0 5960 qsid 6194 recidpirq 7026 axprecex 7046 negeq0 7362 muleqadd 7758 cjne0 9795 sqrt00 9926 sqrtmsq2i 10021 |
Copyright terms: Public domain | W3C validator |