ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthg GIF version

Theorem opthg 3993
Description: Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem opthg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3570 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21eqeq1d 2089 . . 3 (𝑥 = 𝐴 → (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩))
3 eqeq1 2087 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐶𝐴 = 𝐶))
43anbi1d 452 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝑦 = 𝐷)))
52, 4bibi12d 233 . 2 (𝑥 = 𝐴 → ((⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷))))
6 opeq2 3571 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
76eqeq1d 2089 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩))
8 eqeq1 2087 . . . 4 (𝑦 = 𝐵 → (𝑦 = 𝐷𝐵 = 𝐷))
98anbi2d 451 . . 3 (𝑦 = 𝐵 → ((𝐴 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
107, 9bibi12d 233 . 2 (𝑦 = 𝐵 → ((⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))))
11 vex 2604 . . 3 𝑥 ∈ V
12 vex 2604 . . 3 𝑦 ∈ V
1311, 12opth 3992 . 2 (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷))
145, 10, 13vtocl2g 2662 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  cop 3401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407
This theorem is referenced by:  opthg2  3994  xpopth  5822  eqop  5823  preqlu  6662  cauappcvgprlemladd  6848  elrealeu  6998
  Copyright terms: Public domain W3C validator