ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2x GIF version

Theorem ovmpt2x 5649
Description: The value of an operation class abstraction. Variant of ovmpt2ga 5650 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpt2x.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpt2x.2 (𝑥 = 𝐴𝐷 = 𝐿)
ovmpt2x.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpt2x ((𝐴𝐶𝐵𝐿𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐿,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpt2x
StepHypRef Expression
1 elex 2610 . 2 (𝑆𝐻𝑆 ∈ V)
2 ovmpt2x.3 . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
32a1i 9 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
4 ovmpt2x.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
54adantl 271 . . 3 (((𝐴𝐶𝐵𝐿𝑆 ∈ V) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
6 ovmpt2x.2 . . . 4 (𝑥 = 𝐴𝐷 = 𝐿)
76adantl 271 . . 3 (((𝐴𝐶𝐵𝐿𝑆 ∈ V) ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿)
8 simp1 938 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝐴𝐶)
9 simp2 939 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝐵𝐿)
10 simp3 940 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝑆 ∈ V)
113, 5, 7, 8, 9, 10ovmpt2dx 5647 . 2 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆)
121, 11syl3an3 1204 1 ((𝐴𝐶𝐵𝐿𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  Vcvv 2601  (class class class)co 5532  cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator