![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.21nii | GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
2 | pm5.21nii.3 | . . . 4 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜒)) |
4 | 3 | ibi 174 | . 2 ⊢ (𝜑 → 𝜒) |
5 | pm5.21ni.2 | . . . 4 ⊢ (𝜒 → 𝜓) | |
6 | 5, 2 | syl 14 | . . 3 ⊢ (𝜒 → (𝜑 ↔ 𝜒)) |
7 | 6 | ibir 175 | . 2 ⊢ (𝜒 → 𝜑) |
8 | 4, 7 | impbii 124 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: anxordi 1331 elrabf 2747 sbcco 2836 sbc5 2838 sbcan 2856 sbcor 2858 sbcal 2865 sbcex2 2867 sbcel1v 2876 eldif 2982 elun 3113 elin 3155 eluni 3604 eliun 3682 elopab 4013 opelopabsb 4015 opeliunxp 4413 opeliunxp2 4494 elxp4 4828 elxp5 4829 fsn2 5358 isocnv2 5472 elxp6 5816 elxp7 5817 brtpos2 5889 tpostpos 5902 ecdmn0m 6171 bren 6251 elinp 6664 recexprlemell 6812 recexprlemelu 6813 gt0srpr 6925 ltresr 7007 eluz2 8625 elfz2 9036 rexanuz2 9877 even2n 10273 infssuzex 10345 |
Copyright terms: Public domain | W3C validator |