| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prprc1 | GIF version | ||
| Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prprc1 | ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 3457 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | uneq1 3119 | . . 3 ⊢ ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵})) | |
| 3 | df-pr 3405 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 4 | uncom 3116 | . . . 4 ⊢ (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅) | |
| 5 | un0 3278 | . . . 4 ⊢ ({𝐵} ∪ ∅) = {𝐵} | |
| 6 | 4, 5 | eqtr2i 2102 | . . 3 ⊢ {𝐵} = (∅ ∪ {𝐵}) |
| 7 | 2, 3, 6 | 3eqtr4g 2138 | . 2 ⊢ ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵}) |
| 8 | 1, 7 | sylbi 119 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∪ cun 2971 ∅c0 3251 {csn 3398 {cpr 3399 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-un 2977 df-nul 3252 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: prprc2 3501 prprc 3502 |
| Copyright terms: Public domain | W3C validator |