ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc1 GIF version

Theorem prprc1 3500
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prprc1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 3457 . 2 𝐴 ∈ V ↔ {𝐴} = ∅)
2 uneq1 3119 . . 3 ({𝐴} = ∅ → ({𝐴} ∪ {𝐵}) = (∅ ∪ {𝐵}))
3 df-pr 3405 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4 uncom 3116 . . . 4 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
5 un0 3278 . . . 4 ({𝐵} ∪ ∅) = {𝐵}
64, 5eqtr2i 2102 . . 3 {𝐵} = (∅ ∪ {𝐵})
72, 3, 63eqtr4g 2138 . 2 ({𝐴} = ∅ → {𝐴, 𝐵} = {𝐵})
81, 7sylbi 119 1 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1284  wcel 1433  Vcvv 2601  cun 2971  c0 3251  {csn 3398  {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-nul 3252  df-sn 3404  df-pr 3405
This theorem is referenced by:  prprc2  3501  prprc  3502
  Copyright terms: Public domain W3C validator