ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimdv GIF version

Theorem ralimdv 2430
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.)
Hypothesis
Ref Expression
ralimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralimdv (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem ralimdv
StepHypRef Expression
1 ralimdv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 270 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ralimdva 2429 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440  ax-17 1459
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-ral 2353
This theorem is referenced by:  poss  4053  sess1  4092  sess2  4093  riinint  4611  dffo4  5336  dffo5  5337  isoini2  5478  rdgivallem  5991  iinerm  6201  resqrexlemgt0  9906  cau3lem  10000  caubnd2  10003  climshftlemg  10141  climcau  10184  climcaucn  10188  serif0  10189  bezoutlemmain  10387
  Copyright terms: Public domain W3C validator