ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinint GIF version

Theorem riinint 4611
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
riinint ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
Distinct variable groups:   𝑘,𝑉   𝑘,𝑋
Allowed substitution hints:   𝑆(𝑘)   𝐼(𝑘)

Proof of Theorem riinint
StepHypRef Expression
1 ssexg 3917 . . . . . . 7 ((𝑆𝑋𝑋𝑉) → 𝑆 ∈ V)
21expcom 114 . . . . . 6 (𝑋𝑉 → (𝑆𝑋𝑆 ∈ V))
32ralimdv 2430 . . . . 5 (𝑋𝑉 → (∀𝑘𝐼 𝑆𝑋 → ∀𝑘𝐼 𝑆 ∈ V))
43imp 122 . . . 4 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ∀𝑘𝐼 𝑆 ∈ V)
5 dfiin3g 4608 . . . 4 (∀𝑘𝐼 𝑆 ∈ V → 𝑘𝐼 𝑆 = ran (𝑘𝐼𝑆))
64, 5syl 14 . . 3 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → 𝑘𝐼 𝑆 = ran (𝑘𝐼𝑆))
76ineq2d 3167 . 2 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = (𝑋 ran (𝑘𝐼𝑆)))
8 intun 3667 . . 3 ({𝑋} ∪ ran (𝑘𝐼𝑆)) = ( {𝑋} ∩ ran (𝑘𝐼𝑆))
9 intsng 3670 . . . . 5 (𝑋𝑉 {𝑋} = 𝑋)
109adantr 270 . . . 4 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → {𝑋} = 𝑋)
1110ineq1d 3166 . . 3 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ( {𝑋} ∩ ran (𝑘𝐼𝑆)) = (𝑋 ran (𝑘𝐼𝑆)))
128, 11syl5eq 2125 . 2 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → ({𝑋} ∪ ran (𝑘𝐼𝑆)) = (𝑋 ran (𝑘𝐼𝑆)))
137, 12eqtr4d 2116 1 ((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  Vcvv 2601  cun 2971  cin 2972  wss 2973  {csn 3398   cint 3636   ciin 3679  cmpt 3839  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-int 3637  df-iin 3681  df-br 3786  df-opab 3840  df-mpt 3841  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator